Vendruscolo, M., Zurdo, J., MacPhee, C. E. & Dobson, C. M. Protein folding and misfolding: a paradigm of self-assembly and regulation in complex biological systems. Phil. Trans. R. Soc. Lond.361, 1205–1222 (2003). ArticleADSMathSciNetCAS Google Scholar
Radford, S. E. & Dobson, C. M. From computer simulations to human disease: emerging themes in protein folding. Cell97, 291–298 (1999). ArticleCAS Google Scholar
Dobson, C. M., Sali, A. & Karplus, M. Protein folding: a perspective from theory and experiment. Angew. Chem. Int. Ed. Eng.37, 868–893 (1998). Article Google Scholar
Wolynes, P. G., Onuchic, J. N. & Thirumalai, D. Navigating the folding routes. Science267, 1619–1620 (1995). ArticleADSCAS Google Scholar
Dill, K. A. & Chan, H. S. From Levinthal to pathways to funnels. Nature Struct. Biol.4, 10–19 (1997). ArticleCAS Google Scholar
Dinner, A. R., Sali, A., Smith, L. J., Dobson, C. M. & Karplus, M. Understanding protein folding via free energy surfaces from theory and experiment. Trends Biochem. Sci.25, 331–339 (2000). ArticleCAS Google Scholar
Baldwin, R. L. Protein folding: matching speed and stability. Nature369, 183–184 (1994). ArticleADSCAS Google Scholar
Eaton, W. A., Munoz, V., Thompson, P. A., Henry, E. R. & Hofrichter, J. Kinetics and dynamics of loops, α-helices, β-hairpins, and fast-folding proteins. Acc. Chem. Res.31, 745–753 (1998). ArticleCAS Google Scholar
Snow, C. D., Nguyen, H., Pande, V. S. & Gruebele, M. Absolute comparison of simulated and experimental protein-folding dynamics. Nature420, 102–106 (2002). ArticleADSCAS Google Scholar
Mayor, U. et al. The complete folding pathway of a protein from nanoseconds to microseconds. Nature421, 863–867 (2003). ArticleADSCAS Google Scholar
Plaxco, K. W., Simons, K. T. & Baker, D. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol.277, 985–994 (1998). ArticleCAS Google Scholar
Schuler, B., Lipman, E. A. & Eaton, W. A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature419, 743–747 (2002). ArticleADSCAS Google Scholar
Fersht, A. R. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (W.H. Freeman, New York, 1999). Google Scholar
Fersht, A. R. Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism. Proc. Natl Acad. Sci. USA97, 1525–1529 (2000). ArticleADSCAS Google Scholar
Shea, J. E. & Brooks, C. L. From folding surfaces to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem.52, 499–535 (2001). ArticleADSCAS Google Scholar
Fersht, A. R. & Daggett, V. Protein folding and unfolding at atomic resolution. Cell108, 573–582 (2002). ArticleCAS Google Scholar
Vendruscolo, M., Paci, E., Dobson, C. M. & Karplus, M. Three key residues form a critical contact network in a transition state for protein folding. Nature409, 641–646 (2001). ArticleADSCAS Google Scholar
Makarov, D. E. & Plaxco, K. W. The topomer search model: a simple, quantitative theory of two-state protein folding kinetics. Protein Sci.12, 17–26 (2003). ArticleCAS Google Scholar
Roder, H. & Colon, W. Kinetic role of early intermediates in protein folding. Curr. Opin. Struct. Biol.7, 15–28 (1997). ArticleCAS Google Scholar
Sanchez, I. E. & Kiefhaber, T. Evidence for sequential barriers and obligatory intermediates in apparent two-state protein folding. J. Mol. Biol.325, 367–376 (2003). ArticleCAS Google Scholar
Khan, F., Chuang, J. I., Gianni, S. & Fersht, A. R. The kinetic pathway of folding of barnase. J. Mol. Biol.333, 169–186 (2003). ArticleCAS Google Scholar
Vendruscolo, M., Paci, E., Karplus, M. & Dobson, C. M. Structures and relative free energies of partially folded states of proteins. Proc. Natl Acad. Sci. USA100, 14817–14821 (2003). ArticleADSCAS Google Scholar
Cheung, M. S., Garcia, A. E. & Onuchic, J. N. Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc. Natl Acad. Sci. USA99, 685–690 (2002). ArticleADSCAS Google Scholar
Hardesty, B. & Kramer, G. Folding of a nascent peptide on the ribosome. Prog. Nucleic Acid Res. Mol. Biol.66, 41–66 (2001). ArticleCAS Google Scholar
Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell92, 351–366 (1998). ArticleCAS Google Scholar
Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science295, 1852–1858 (2002). ArticleADSCAS Google Scholar
Ellis, R. J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol.11, 114–119 (2001). ArticleCAS Google Scholar
Schiene, C. & Fischer, G. Enzymes that catalyse the restructuring of proteins. Curr. Opin. Struct. Biol.10, 40–45 (2000). ArticleCAS Google Scholar
Hammon, C. & Helenius, A. Quality control in the secretory pathway. Curr. Opin. Cell. Biol.7, 523–529 (1995). Article Google Scholar
Kaufman, R. J. et al. The unfolded protein response in nutrient sensing and differentiation. Nature Rev. Mol. Cell Biol.3, 411–421 (2002). ArticleCAS Google Scholar
Wilson, M. R. & Easterbrook Smith, S. B. Clusterin is a secreted mammalian chaperone. Trends Biochem. Sci.25, 95–98 (2000). ArticleCAS Google Scholar
Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature404, 770–774 (2000). ArticleADSCAS Google Scholar
Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin–proteasome system by protein aggregation. Science292, 1552–1555 (2001). ArticleADSCAS Google Scholar
Thomas, P. J., Qu, B. H. & Pedersen, P. L. Defective protein folding as a basis of human disease. Trends Biochem. Sci.20, 456–459 (1995). ArticleCAS Google Scholar
Dobson, C. M. The structural basis of protein folding and its links with human disease. Phil. Trans. R. Soc. Lond. B356, 133–145 (2001). ArticleCAS Google Scholar
Horwich, A. Protein aggregation in disease: a role for folding intermediates forming specific multimeric interactions. J. Clin. Invest.110, 1221–1232 (2002). ArticleCAS Google Scholar
Bullock, A. N. & Fersht, A. R. Rescuing the functions of mutant p53. Nature Rev. Cancer1, 68–76 (2001). ArticleCAS Google Scholar
Kelly, J. W. Alternative conformation of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol.8, 101–106 (1998). ArticleCAS Google Scholar
Sunde, M. & Blake, C. C. F. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein Chem.50, 123–159 (1997). ArticleCAS Google Scholar
Dobson, C. M. Protein misfolding, evolution and disease. Trends Biochem. Sci.24, 329–332 (1999). ArticleCAS Google Scholar
Fändrich, M. & Dobson, C. M. The behaviour of polyamino acids reveals an inverse side-chain effect in amyloid structure formation. EMBO J.21, 5682–5690 (2002). Article Google Scholar
Jiménez, J. L. et al. Cryo-electron microscopy of an SH3 amyloid fibril and model of the molecular packing. EMBO J.18, 815–821 (1999). Article Google Scholar
Petkova, A. T. et al. A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl Acad. Sci. USA99, 16742–16747 (2002). ArticleADSCAS Google Scholar
Chiti, F., Stefani, M., Taddei, N., Ramponi, G. & Dobson, C. M. Rationalization of mutational effects on protein aggregation rates. Nature424, 805–808 (2003). ArticleADSCAS Google Scholar
Caughey, B. & Lansbury, P. T. Jr. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci.26, 267–298 (2003). ArticleCAS Google Scholar
Bitan, G. et al. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl Acad. Sci. USA100, 330–335 (2003). ArticleADSCAS Google Scholar
Nilsson, M. R., Driscoll, M. & Raleigh, D. P. Low levels of asparagine deamidation can have a dramatic effect on aggregation of amyloidogenic peptides: implications for the study of amyloid formation. Protein Sci.11, 342–349 (2002). ArticleCAS Google Scholar
Schlunegger, M. P., Bennett, M. J. & Eisenberg, D. Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv. Protein Chem.50, 61–122 (1997). ArticleCAS Google Scholar
Bucciantini, M. et al. Inherent cytotoxicity of aggregates implies a common origin for protein misfolding diseases. Nature416, 507–511 (2002). ArticleADSCAS Google Scholar
Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T. & Lansbury, P. T. Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature418, 291 (2002). ArticleADSCAS Google Scholar
Dobson, C. M. Protein folding and disease: a view from the First Horizon Symposium. Nature Rev. Drug Discov.2, 154–160 (2003). ArticleCAS Google Scholar
True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature407, 477–483 (2000). ArticleADSCAS Google Scholar
Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science295, 851–855 (2002). ArticleADSCAS Google Scholar
Kelly, J. W. & Balch, W. E. Amyloid as a natural product. J. Cell Biol.161, 461–462 (2003). ArticleCAS Google Scholar
Broome, B. M. & Hecht, M. H. Nature disfavours sequences of alternating polar and non-polar amino acids: implications for amyloidogenesis. J. Mol. Biol.296, 961–968 (2000). ArticleCAS Google Scholar
Chiti, F. et al. Kinetic partitioning of protein folding and aggregation. Nature Struct. Biol.9, 137–143 (2002). ArticleCAS Google Scholar
Macario, A. J. L. & Macario, E. C. Sick chaperones and ageing: a perspective. Ageing Res. Rev.1, 295–311 (2002). ArticleCAS Google Scholar
Ramirez-Alvarado, M., Merkel, J. S. & Regan, L. A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc. Natl Acad. Sci. USA97, 8979–8984 (2000). ArticleADSCAS Google Scholar
Dumoulin, M. et al. A camelid antibody fragment inhibits amyloid fibril formation by human lysozyme. Nature424, 783–788 (2003). ArticleADSCAS Google Scholar
Prusiner, S. B. Prion diseases and the BSE crisis. Science278, 245–251 (1997). ArticleCAS Google Scholar
Taylor, J. P., Hardy, J. & Fischbeck, K. H. Toxic proteins in neurodegenerative disease. Science296, 1991–1995 (2002). ArticleADSCAS Google Scholar
Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature416, 535–539 (2002). ArticleADSCAS Google Scholar
Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanisms of pathogenesis. Science300, 486–489 (2003). ArticleADSCAS Google Scholar
Stefani, M. & Dobson, C. M. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med.81, 678–699 (2003). ArticleCAS Google Scholar
Sherman, M. Y. & Goldberg, A. L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron29, 15–32 (2001). ArticleCAS Google Scholar
Muchowski, P. J. et al. Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl Acad. Sci. USA97, 7841–7846 (2000). ArticleADSCAS Google Scholar
Csermely, P. Chaperone overload is a possible contributor to 'civilization diseases'. Trends Genet.17, 701–704 (2001). ArticleCAS Google Scholar
Dobson, C. M. Getting out of shape—protein misfolding diseases. Nature418, 729–730 (2002). ArticleADSCAS Google Scholar