Protein degradation and protection against misfolded or damaged proteins (original) (raw)
References
Glickman, M. H. & Ciechanover, A. The ubiquitin–proteasome proteolytic pathway: Destruction for the sake of construction. Physiol. Rev.82, 373–428 (2002). ArticleCAS Google Scholar
Goldberg, A. L. & Dice, J. F. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem.43, 835–869 (1974). ArticleCAS Google Scholar
Sherman, M. & Goldberg, A. L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron29, 15–32 (2001). ArticleCAS Google Scholar
Goldberg, A. L. Degradation of abnormal proteins in E. coli. Proc. Natl Acad. Sci. USA69, 422–426 (1972). ArticleADSCAS Google Scholar
Zwickl, P., Goldberg, A. L. & Baumeister, W. in Proteasomes: The World of Regulatory Proteolysis (eds Wolf, D. H. & Hilt, W.) 8–20 (Landes Bioscience, Georgetown, Texas, 2000). Google Scholar
Etlinger, J. & Goldberg, A. L. A soluble, ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl Acad. Sci. USA.74, 54–58 (1977). ArticleADSCAS Google Scholar
Klemes, Y., Etlinger, J. D. & Goldberg, A. L. Properties of proteins degraded rapidly in reticulocytes: intracellular aggregation of the globin molecules prior to hydrolysis. J. Biol. Chem.256, 8436–8444 (1981). CASPubMed Google Scholar
Bunn, H. F. et al. Hemoglobin: Molecular, Genetic, and Clinical Aspects (Saunders, Philadelphia, 1986). Google Scholar
Goldberg, A. L. & Goff, S. A. in Maximizing Gene Expression Ch. 9 (eds Reznikoff, W. & Gold, L.) 287–314 (Butterworths, Stoneham, Massachusetts, 1986). Book Google Scholar
Kostova, Z. & Wolf, D. H. For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin–proteasome connection. EMBO J.22, 2309–2317 (2003). ArticleCAS Google Scholar
Goff, S. A., Voellmy, R. & Goldberg, A. L. in Ubiquitin Ch. 8 (ed. Rechsteiner, M.) 207–238 (Plenum, New York, 1988). Book Google Scholar
Roche, E. & Sauer, R. T. SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J.18, 4579–4589 (1999). ArticleCAS Google Scholar
Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem.70, 603–647 (2001). ArticleCAS Google Scholar
Hartl, F. U. & Mayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science295, 1852–1858 (2002). ArticleADSCAS Google Scholar
Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature44, 770–774 (2000). ArticleADS Google Scholar
Gronostajski, R., Pardee, A. B. & Goldberg, A. L. The ATP-dependence of the degradation of short- and long-lived proteins in growing fibroblasts. J. Biol. Chem.260, 3344–3349 (1985). CASPubMed Google Scholar
Berlett, B. S. & Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem.272, 20313–20316 (1997). ArticleCAS Google Scholar
Grune, T., Reinheckel, T., Davies, K. J. Degradation of oxidized proteins in mammalian cells. FASEB J.11, 536–534 (1997). Article Google Scholar
Tarcsa, E., Szymanska, G., Lecker, S., O'Connor, C. M. & Goldberg, A. L. Ca2+-free calmodulin and calmodulin damaged by in vitro aging are selectively degraded by 26S proteasomes without ubiquitylation. J. Biol. Chem.275, 20295–20301 (2000). ArticleCAS Google Scholar
Prouty, W. F. & Goldberg, A. L. Fate of abnormal proteins in E. coli: accumulation in intracellular granules before catabolism. Nature New Biol.240, 147–150 (1972). ArticleCAS Google Scholar
Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell94, 73–82 (1998). ArticleCAS Google Scholar
Johnston, J. A., Ward, C. L. & Kopito, R. R. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 1998. 143, 1883–1898.
Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell101, 57–66 (2000). ArticleCAS Google Scholar
Ciechanover, A., Heller, H., Elias, S., Haas, A. L. & Hershko A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc. Natl Acad. Sci. USA77, 1365–1368 (1980). ArticleADSCAS Google Scholar
Hough, R., Pratt, G. & Rechsteiner, M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem.262, 8303–8313 (1987). CAS Google Scholar
Waxman, L., Fagan, J. M. & Goldberg, A. L. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J. Biol. Chem.262, 2451–2457 (1987). CAS Google Scholar
Voges, D., Zwickl, P., Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem.68, 1015–1068 (2000). Article Google Scholar
Ananthan, J., Goldberg, A. L. & Voellmy, R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat-shock genes. Science232, 522–524 (1986). ArticleADSCAS Google Scholar
Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M. & Cyr, D. M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nature Cell Biol.3, 100–105 (2001). ArticleCAS Google Scholar
Murata, S., Minami, Y., Minami, M., Chiba, T. & Tanaka, K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep.2, 1133–1138. (2001). ArticleCAS Google Scholar
Wickner, S., Maurizi, M. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science286, 1888–1893 (1999). ArticleCAS Google Scholar
Huang, H.C., Sherman, M. Y., Kandror, O. & Goldberg, A. L. The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in E. coli. J. Biol. Chem.276, 3920–3928 (2001). ArticleCAS Google Scholar
Goldberg, A. L. The mechanisms and functions of ATP-dependent proteases in bacterial and animal cells. Eur. J. Biochem.203, 9–23 (1992). ArticleCAS Google Scholar
Maurizi, M. R. Proteases and protein degradation in Escherichia coli. Experientia48, 178–201 (1992). ArticleCAS Google Scholar
Langer, T., Kaser, M., Klanner, C., Leonhard, K. AAA proteases of mitochondria: quality control of membrane proteins and regulatory functions during mitochondrial biogenesis. Biochem. Soc. Trans.29, 431–436 (2001). ArticleCAS Google Scholar
Suzuki, C. K., Rep, M., van Dijl, J. M., Suda, K., Grivell, L. A., Schatz, G. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem. Sci.22, 118–123 (1997). ArticleCAS Google Scholar
Kandror, O., Sherman, M. Y. & Goldberg, A. L. Rapid degradation of an abnormal protein in E. coli proceeds through repeated cycles of association with GroEL. J. Biol. Chem.274, 37743–37749 (1999). ArticleCAS Google Scholar
Groll, M. et al. A gated channel into the proteasome core particle. Nature Struct. Biol.7, 1062–1067 (2000). ArticleCAS Google Scholar
Benaroudj, N., Zwickl, P., Seemüller, E., Baumeister, W. & Goldberg, A. L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell11, 69–78 (2003). ArticleCAS Google Scholar
Lee, D. H. & Goldberg, A. L. Proteasome inhibitors cause rapid induction of heat-shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol. Cell. Biol.18, 30–38 (1998). ArticleCAS Google Scholar
Kisselev, A. F. & Goldberg, A. L. Proteasome inhibitors: from research tools to drug candidates. Chemy Biol.8, 739–758 (2001). ArticleCAS Google Scholar
Meiners, S. et al. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J. Biol. Chem.278, 21517–21525 (2003). ArticleCAS Google Scholar
Meriin, A. B. et al. Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: a novel pathway controlled by HSP72. Mol. Cell. Biol.19, 2547–2555 (1999). ArticleCAS Google Scholar
Hideshima, T. et al. The proteasome inhibitor pS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res.61, 3071–3076 (2001). CAS Google Scholar