Cytoplasmic dynein functions as a gear in response to load (original) (raw)

References

  1. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998)
    Article ADS CAS Google Scholar
  2. Hackney, D. D. The kinetic cycles of myosin, kinesin and dynein. Annu. Rev. Physiol. 58, 731–750 (1996)
    Article CAS Google Scholar
  3. Asai, D. J. & Koonce, M. P. The dynein heavy chain: structure, mechanics and evolution. Trends Cell Biol. 11, 196–202 (2001)
    Article CAS Google Scholar
  4. King, S. M. AAA domains and organization of the dynein motor unit. J. Cell Sci. 113, 2521–2526 (2000)
    CAS PubMed Google Scholar
  5. King, S. M. The dynein microtubule motor. Biochim. Biophys. Acta 1496, 60–75 (2000)
    Article CAS Google Scholar
  6. Rice, S. E. & Spudich, J. A. Building and using optical traps to study properties of molecular motors. Methods Enzymol. 361, 112–133 (2003)
    Article CAS Google Scholar
  7. Wang, Z., Khan, S. & Sheetz, M. P. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995)
    Article ADS CAS Google Scholar
  8. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994)
    Article CAS Google Scholar
  9. Gelles, J., Schnapp, B. J. & Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988)
    Article ADS CAS Google Scholar
  10. Visscher, K. & Block, S. M. Versatile optical traps with feedback control. Methods Enzymol. 298, 460–489 (1998)
    Article CAS Google Scholar
  11. Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999)
    Article ADS CAS Google Scholar
  12. Sakakibara, H., Kojima, H., Sakai, Y., Katayama, E. & Oiwa, K. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature 400, 586–590 (1999)
    Article ADS CAS Google Scholar
  13. Gross, S. P., Welte, M. A., Block, S. M. & Wieschaus, E. F. Dynein-mediated cargo transport in vivo: A switch controls travel distance. J. Cell Biol. 148, 945–955 (2000)
    Article CAS Google Scholar
  14. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993)
    Article ADS CAS Google Scholar
  15. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003)
    Article ADS CAS Google Scholar
  16. Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997)
    Article ADS CAS Google Scholar
  17. Hirakawa, E., Higuchi, H. & Toyoshima, Y. Y. Processive movement of single 22S dynein molecules occurs only at low ATP concentrations. Proc. Natl Acad. Sci. USA 97, 2533–2537 (2000)
    Article ADS CAS Google Scholar
  18. Shingyoji, C., Higuchi, H., Yoshimura, M., Katayama, E. & Yanagida, T. Dynein arms are oscillating force generators. Nature 393, 711–714 (1998)
    Article ADS CAS Google Scholar
  19. Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997)
    Article ADS CAS Google Scholar
  20. Mehta, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999)
    Article ADS CAS Google Scholar
  21. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation and disassembly of protein complexes. Genome Res. 9, 27–43 (1999)
    CAS PubMed Google Scholar
  22. Vale, R. D. AAA proteins. Lords of the ring. J. Cell Biol. 150, F13–F19 (2000)
    Article CAS Google Scholar
  23. Samso, M., Radermacher, M., Frank, J. & Koonce, M. P. Structural characterization of a dynein motor domain. J. Mol. Biol. 276, 927–937 (1998)
    Article CAS Google Scholar
  24. Silvanovich, A., Li, M., Serr, M., Mische, S. & Hays, T. S. The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. Mol. Biol. Cell 14, 1355–1365 (2003)
    Article CAS Google Scholar
  25. Mocz, G. & Gibbons, I. R. Model for the motor component of dynein heavy chain based on homology to the AAA family of oligomeric ATPases. Structure 9, 93–103 (2001)
    Article CAS Google Scholar
  26. Whiteheart, S. W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126, 945–954 (1994)
    Article CAS Google Scholar
  27. Bingham, J. B., King, S. J. & Schroer, T. A. Purification of dynactin and dynein from brain tissue. Methods Enzymol. 298, 171–184 (1998)
    Article CAS Google Scholar
  28. Schroer, T. A. & Sheetz, M. P. Two activators of microtubule-based vesicle transport. J. Cell Biol. 115, 1309–1318 (1991)
    Article CAS Google Scholar
  29. Sloboda, R. D. & Rosenbaum, J. L. Purification and assay of microtubule-associated proteins (MAPs). Methods Enzymol. 85, 171–184 (1982)
    Google Scholar
  30. King, S. J. & Schroer, T. A. Dynactin increases the processivity of the cytoplasmic dynein motor. Nature Cell Biol. 2, 20–24 (2000)
    Article CAS Google Scholar

Download references