Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers (original) (raw)
References
Suchyna, T. M. et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J. Gen. Physiol.115, 583–598 (2000) ArticleCASPubMedPubMed Central Google Scholar
Andersen, O. S. et al. Ion channels as tools to monitor lipid bilayer-membrane protein interactions: gramicidin channels as molecular force transducers. Methods Enzymol.294, 208–224 (1999) ArticleCASPubMed Google Scholar
Patel, A. J. et al. Inhalational anesthetics activate two-pore-domain background K+ channels. Nature Neurosci.2, 422–426 (1999) ArticleCASPubMed Google Scholar
Patel, A. J., Lazdunski, M. & Honore, E. Lipid and mechano-gated 2P domain K+ channels. Curr. Opin. Cell Biol.13, 422–427 (2001) ArticleCASPubMed Google Scholar
Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct. Biol.9, 696–703 (2002) ArticleCASPubMed Google Scholar
Lundbæk, J. A. & Andersen, O. S. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol.104, 645–673 (1994) ArticlePubMed Google Scholar
Hwang, T. C., Koeppe, R. E. II & Andersen, O. S. Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. Biochemistry42, 13646–13658 (2003) ArticleCASPubMed Google Scholar
Oswald, R. E., Suchyna, T. M., McFeeters, R., Gottlieb, P. & Sachs, F. Solution structure of peptide toxins that block mechanosensitive ion channels. J. Biol. Chem.277, 34443–34450 (2002) ArticleCASPubMed Google Scholar
Ostrow, K. L. et al. cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon42, 263–274 (2003) ArticleCASPubMed Google Scholar
Markin, V. S. & Sachs, F. Thermodynamics of mechanosensitivity. Physical Biol. (in the press)
Suchyna, T. & Sachs, F. Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time. Phys. Biol.1, 1–18 (2004) ArticleADSCASPubMed Google Scholar
Ladokhin, A. S., Jayasinghe, S. & White, S. H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal. Biochem.285, 235–245 (2000) ArticleCASPubMed Google Scholar
White, S. H., Wimley, W. C., Ladokhin, A. S. & Hristova, K. Protein folding in membranes: determining energetics of peptide-bilayer interactions. Methods Enzymol.295, 62–87 (1998) ArticleCASPubMed Google Scholar
Kim, J., Mosior, M., Chung, L. A., Wu, H. & McLaughlin, S. Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys. J.60, 135–148 (1991) ArticleCASPubMedPubMed Central Google Scholar
Lundbæk, J. A. & Andersen, O. S. Spring constants for channel-induced lipid bilayer deformations—estimates using gramicidin channels. Biophys. J.76, 889–895 (1999) ArticlePubMedPubMed Central Google Scholar
O'Connell, A. M., Koeppe, R. E. II & Andersen, O. S. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science250, 1256–1259 (1990) ArticleADSCASPubMed Google Scholar
Elliott, J. R., Needham, D., Dilger, J. P. & Haydon, D. A. The effects of bilayer thickness and tension on gramicidin single-channel lifetime. Biochim. Biophys. Acta735, 95–103 (1983) ArticleCASPubMed Google Scholar
Koeppe, R. E. II et al. On the helix sense of gramicidin A single channels. Proteins12, 49–62 (1992) ArticleCASPubMed Google Scholar
Trudelle, Y. & Heitz, F. Synthesis and characterization of Tyr(Bzl)9,11,13,15 and Tyr9,11,13,15 gramicidin A. Int. J. Pept. Protein Res.30, 163–169 (1987) ArticleCASPubMed Google Scholar
Lundbæk, J. A. et al. Regulation of sodium channel function by bilayer elasticity the importance of hydrophobic coupling: effects of micelle-forming amphiphiles and cholesterol. J. Gen. Physiol.123, 599–621 (2004) ArticlePubMedPubMed Central Google Scholar
Bode, F., Sachs, F. & Franz, M. R. Tarantula peptide inhibits atrial fibrillation. Nature409, 35–36 (2001) ArticleADSCASPubMed Google Scholar
Gudi, S., Nolan, J. P. & Frangos, J. A. Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc. Natl Acad. Sci. USA95, 2515–2519 (1998) ArticleADSCASPubMedPubMed Central Google Scholar
Laitko, U. & Morris, C. E. Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a Shaker channel. J. Gen. Physiol.123, 135–154 (2004) ArticlePubMedPubMed Central Google Scholar
Greathouse, D. V., Koeppe, R. E. II, Providence, L. L., Shobana, S. & Andersen, O. S. Design and characterization of gramicidin channels. Methods Enzymol.294, 525–550 (1999) ArticleCASPubMed Google Scholar
Bett, G. C. & Sachs, F. Activation and inactivation of mechanosensitive currents in the chick heart. J. Membr. Biol.173, 237–254 (2000) ArticleCASPubMed Google Scholar