A transmembrane protein required for acetylcholine receptor clustering in Caenorhabditis elegans (original) (raw)
References
Lewis, J. A., Wu, C. H., Berg, H. & Levine, J. H. The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics95, 905–928 (1980) CASPubMedPubMed Central Google Scholar
Lewis, J. A., Wu, C. H., Levine, J. H. & Berg, H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience5, 967–989 (1980) ArticleCASPubMed Google Scholar
Richmond, J. E. & Jorgensen, E. M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nature Neurosci.2, 791–797 (1999) ArticleCASPubMed Google Scholar
Bessereau, J. L. et al. Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature413, 70–74 (2001) ArticleADSCASPubMed Google Scholar
Fleming, J. T. et al. Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J. Neurosci.17, 5843–5857 (1997) ArticleCASPubMedPubMed Central Google Scholar
Alfonso, A., Grundahl, K., Duerr, J. S., Han, H. P. & Rand, J. B. The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science261, 617–619 (1993) ArticleADSCASPubMed Google Scholar
Bamber, B. A., Beg, A. A., Twyman, R. E. & Jorgensen, E. M. The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci.19, 5348–5359 (1999) ArticleCASPubMedPubMed Central Google Scholar
Gally, C. & Bessereau, J. L. GABA is dispensable for the formation of junctional GABA receptor clusters in Caenorhabditis elegans. J. Neurosci.23, 2591–2599 (2003) ArticleCASPubMedPubMed Central Google Scholar
Raizen, D. M., Lee, R. Y. & Avery, L. Interacting genes required for pharyngeal excitation by motor neuron MC in Caenorhabditis elegans. Genetics141, 1365–1382 (1995) CASPubMedPubMed Central Google Scholar
McKay, J. P., Raizen, D. M., Gottschalk, A., Schafer, W. R. & Avery, L. eat-2 and eat-18 are required for nicotinic neurotransmission in the C. elegans pharynx. Genetics166, 161–169 (2004) ArticleCASPubMedPubMed Central Google Scholar
Bork, P. & Beckmann, G. The CUB domain. A widespread module in developmentally regulated proteins. J. Mol. Biol.231, 539–545 (1993) ArticleCASPubMed Google Scholar
Christensen, E. I. & Birn, H. Megalin and cubilin: multifunctional endocytic receptors. Nature Rev. Mol. Cell Biol.3, 256–266 (2002) ArticleCAS Google Scholar
Herz, J. & Bock, H. H. Lipoprotein receptors in the nervous system. Annu. Rev. Biochem.71, 405–434 (2002) ArticleCASPubMed Google Scholar
Duerr, J. S., Gaskin, J. & Rand, J. B. Identified neurons in C. elegans coexpress vesicular transporters for acetylcholine and monoamines. Am. J. Physiol. Cell Physiol.280, C1616–C1622 (2001) ArticleCASPubMed Google Scholar
Okkema, P. G., Harrison, S. W., Plunger, V., Aryana, A. & Fire, A. Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics135, 385–404 (1993) CASPubMedPubMed Central Google Scholar
Ono, F., Mandel, G. & Brehm, P. Acetylcholine receptors direct rapsyn clusters to the neuromuscular synapse in zebrafish. J. Neurosci.24, 5475–5481 (2004) ArticleCASPubMedPubMed Central Google Scholar
Bredt, D. S. & Nicoll, R. A. AMPA receptor trafficking at excitatory synapses. Neuron40, 361–379 (2003) ArticleCASPubMed Google Scholar
Choquet, D. & Triller, A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nature Rev. Neurosci.4, 251–265 (2003) ArticleCAS Google Scholar
O'Brien, R. J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron23, 309–323 (1999) ArticleCASPubMed Google Scholar
Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell103, 945–956 (2000) ArticleCASPubMed Google Scholar
Passafaro, M., Nakagawa, T., Sala, C. & Sheng, M. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature424, 677–681 (2003) ArticleADSCASPubMed Google Scholar
Tomita, S., Fukata, M., Nicoll, R. A. & Bredt, D. S. Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses. Science303, 1508–1511 (2004) ArticleADSCASPubMed Google Scholar
Zheng, Y., Mellem, J. E., Brockie, P. J., Madsen, D. M. & Maricq, A. V. SOL-1 is a CUB-domain protein required for GLR-1 glutamate receptor function in C. elegans. Nature427, 451–457 (2004) ArticleADSCASPubMed Google Scholar
Stohr, H., Berger, C., Frohlich, S. & Weber, B. H. A novel gene encoding a putative transmembrane protein with two extracellular CUB domains and a low-density lipoprotein class A module: isolation of alternatively spliced isoforms in retina and brain. Gene286, 223–231 (2002) ArticleCASPubMed Google Scholar
Michishita, M. et al. A novel gene, Btcl1, encoding CUB and LDLa domains is expressed in restricted areas of mouse brain. Biochem. Biophys. Res. Commun.306, 680–686 (2003) ArticleCASPubMed Google Scholar
Yochem, J., Gu, T. & Han, M. A new marker for mosaic analysis in Caenorhabditis elegans indicates a fusion between hyp6 and hyp7, two major components of the hypodermis. Genetics149, 1323–1334 (1998) CASPubMedPubMed Central Google Scholar
Miller, K. G., Emerson, M. D., McManus, J. R. & Rand, J. B. RIC-8 (Synembryn): a novel conserved protein that is required for Gqα signaling in the C. elegans nervous system. Neuron27, 289–299 (2000) ArticleCASPubMedPubMed Central Google Scholar