Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line (original) (raw)

References

  1. Plasterk, R. H. A. & van Luenen, H. G. A. M. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 97–116 (Cold Spring Harbor Laboratory, New York, 1997).
    Google Scholar
  2. Jacobson, J. W., Medhora, M. M. & Hartl, D. L. Molecular structure of a somatically unstable transposable element in Drosophila. Proc. Natl Acad. Sci. USA 83, 8684–8688 (1986).
    Article ADS CAS PubMed PubMed Central Google Scholar
  3. Hartl, D. L., Lohe, A. R. & Lozovskaya, E. R. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu. Rev. Genet. 31, 337–358 (1997).
    Article CAS PubMed Google Scholar
  4. Plasterk, R. H., Izsvak, Z. & Ivics, Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326–332 (1999).
    Article CAS PubMed Google Scholar
  5. Tosi, L. R. & Beverley, S. M. cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res. 28, 784–790 (2000).
    Article CAS PubMed Central PubMed Google Scholar
  6. Gueiros-Filho, F. J. & Beverley, S. M. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science 276, 1716–1719 (1997).
    Article CAS PubMed Google Scholar
  7. Coates, C. J., Jasinskiene, N., Miyashiro, L. & James, A. A. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl Acad. Sci. USA 95, 3748–3751 (1998).
    Article ADS CAS PubMed PubMed Central Google Scholar
  8. van Luenen, H. G., Colloms, S. D. & Plasterk, R. H. Mobilization of quiet, endogenous Tc3 transposons of Caenorhabditis elegans by forced expression of Tc3 transposase. EMBO J. 12, 2513–2520 (1993).
    Article CAS PubMed Central PubMed Google Scholar
  9. Gruidl, M. E. et al. Multiple potential germ-line helicases are components of the germ-line- specific P granules of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 13837–13842 (1996).
    Article ADS CAS PubMed PubMed Central Google Scholar
  10. Lohe, A. R., Timmons, C., Beerman, I., Lozovskaya, E. R. & Hartl, D. L. Self-inflicted wounds, template-directed gap repair and a recombination hotspot. Effects of the mariner transposase. Genetics 154, 647–656 (2000).
    CAS PubMed PubMed Central Google Scholar
  11. van Luenen, H. G., Colloms, S. D. & Plasterk, R. H. The mechanism of transposition of Tc3 in C. elegans. Cell 79, 293–301 (1994).
    Article CAS PubMed Google Scholar
  12. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).
    Article ADS Google Scholar
  13. Sulston, J. E. & Brenner, S. The DNA of Caenorhabditis elegans. Genetics 77, 95–104 (1974).
    CAS PubMed PubMed Central Google Scholar
  14. Waterston, R. H., Sulston, J. E. & Coulson, A. R. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 23–45 (Cold Spring Harbor Laboratory, New York, 1997).
    Google Scholar
  15. Bryan, G., Garza, D. & Hartl, D. Insertion and excision of the transposable element mariner in Drosophila. Genetics 125, 103–114 (1990).
    CAS PubMed PubMed Central Google Scholar
  16. Sedensky, M. M., Hudson, S. J., Everson, B. & Morgan, P. G. Identification of a mariner-like repetitive sequence in C. elegans. Nucleic Acids Res. 22, 1719–1723 (1994).
    Article CAS PubMed Central PubMed Google Scholar
  17. Robertson, H. M. & Lampe, D. J. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol. Biol. Evol. 12, 850–862 (1995).
    CAS PubMed Google Scholar
  18. Medhora, M., Maruyama, K. & Hartl, D. L. Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics 128, 311–318 (1991).
    CAS PubMed PubMed Central Google Scholar
  19. Candido, E. P. et al. Structure, organization, and expression of the 16-kDa heat shock gene family of Caenorhabditis elegans. Genome 31, 690–697 (1989).
    Article CAS PubMed Google Scholar
  20. Clark, S. G., Lu, X. & Horvitz, H. R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137, 987–997 (1994).
    CAS PubMed PubMed Central Google Scholar
  21. Kramer, J. M., French, R. P., Park, E. C. & Johnson, J. J. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol. Cell. Biol. 10, 2081–2089 (1990).
    Article CAS PubMed Central PubMed Google Scholar
  22. Kelly, W. G., Xu, S., Montgomery, M. K. & Fire, A. Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. Genetics 146, 227–238 (1997).
    CAS PubMed PubMed Central Google Scholar
  23. Williams, B. D., Schrank, B., Huynh, C., Shownkeen, R. & Waterston, R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131, 609–624 (1992).
    CAS PubMed PubMed Central Google Scholar
  24. Fire, A., Harrison, S. W. & Dixon, D. A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93, 189–198 (1990).
    Article CAS PubMed Google Scholar

Download references