Small modulation of ongoing cortical dynamics by sensory input during natural vision (original) (raw)

References

  1. Henry, G. H., Bishop, P. O., Tupper, R. M. & Dreher, B. Orientation specificity and response variability of cells in striate cortex. Vision Res. 13, 1771–1779 (1973)
    Article CAS Google Scholar
  2. Schiller, P. H., Finlay, B. L. & Volman, S. F. Short-term response variability of monkey striate neurons. Brain Res. 105, 347–349 (1976)
    Article CAS Google Scholar
  3. Vogels, R., Spileers, W. & Orban, G. A. The response variability of striate cortical neurons in the behaving monkey. Exp. Brain Res. 77, 432–436 (1989)
    Article CAS Google Scholar
  4. Azouz, R. & Gray, C. M. Cellular mechanisms contributing to response variability of cortical neurons in vivo. J. Neurosci. 19, 2209–2223 (1999)
    Article CAS Google Scholar
  5. Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994)
    Article ADS CAS Google Scholar
  6. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998)
    Article CAS Google Scholar
  7. Pouget, A., Dayan, P. & Zemel, R. Inference and computation with population codes. Annu. Rev. Neurosci. 26, 381–410 (2004)
    Article Google Scholar
  8. Meister, M., Wong, R. O. L., Baylor, D. A. & Shatz, C. J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939–943 (1991)
    Article ADS CAS Google Scholar
  9. Arieli, A., Shoham, D., Hildesheim, R. & Grinvald, A. Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. J. Neurophysiol. 73, 2072–2093 (1995)
    Article CAS Google Scholar
  10. Weliky, M. & Katz, L. C. Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. Science 285, 599–604 (1999)
    Article CAS Google Scholar
  11. Tsodyks, M., Kenet, T., Grinvald, A. & Arieli, A. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286, 1943–1946 (1999)
    Article CAS Google Scholar
  12. Chiu, C. & Weliky, M. Spontaneous activity in developing ferret visual cortex in vivo. J. Neurosci. 21, 8906–8914 (2001)
    Article CAS Google Scholar
  13. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003)
    Article ADS CAS Google Scholar
  14. Gao, W., Newman, D. E., Wormington, A. B. & Pallas, S. Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: Immunocytochemical localization of GABAergic neurons. J. Comp. Neurol. 409, 261–273 (1999)
    Article CAS Google Scholar
  15. Anderson, J., Lampl, I., Reichova, I., Carandini, M. & Ferster, D. Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nature Neurosci. 3, 617–621 (2000)
    Article CAS Google Scholar
  16. Cossart, R., Aronov, D. & Yuste, R. Attractor dynamics of network UP states in the neocortex. Nature 423, 283–288 (2003)
    Article ADS CAS Google Scholar
  17. Shu, Y. S., Hasenstaub, A., Badoual, M., Bal, T. & McCormick, D. A. Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J. Neurosci. 23, 10388–10401 (2003)
    Article CAS Google Scholar
  18. Gallant, J. L., Connor, C. E. & Van Essen, D. C. Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. Neuroreport 9, 1673–1678 (1998)
    Article CAS Google Scholar
  19. Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000)
    Article ADS CAS Google Scholar
  20. Gawne, T. J. & Richmond, B. J. How independent are the messages carried by adjacent inferior temporal cortical neurons? J. Neurosci. 13, 2758–2771 (1993)
    Article CAS Google Scholar
  21. Pola, G., Thiele, A., Hoffmann, K. P. & Panzeri, S. An exact method to quantify the information transmitted by different mechanisms of correlational coding. Network Comput. Neural Syst. 14, 35–60 (2003)
    Article CAS Google Scholar
  22. Nirenberg, S. & Latham, P. E. Decoding neuronal spike trains: How important are correlations? Proc Natl Acad. Sci. USA 100, 1045–1050 (2003)
    Article Google Scholar
  23. Kara, P., Reinagel, P. & Reid, R. C. Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27, 635–646 (2000)
    Article CAS Google Scholar
  24. Hirsch, J. A. et al. Synaptic physiology of the flow of information in the cat's visual cortex in vivo. J. Physiol. (Lond.) 540, 335–350 (2002)
    Article CAS Google Scholar
  25. Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001)
    Article CAS Google Scholar
  26. Lennie, P. The cost of cortical computation. Curr. Biol. 13, 493–497 (2003)
    Article CAS Google Scholar
  27. Weliky, M., Fiser, J., Hunt, R. H. & Wagner, D. N. Coding of natural scenes in primary visual cortex. Neuron 37, 703–718 (2003)
    Article CAS Google Scholar

Download references