Hartwell, L. H. Twenty-five years of cell cycle genetics. Genetics4, 975–80 (1991). Google Scholar
Stockwell, B. R. Chemical genetics: ligand-based discovery of gene function. Nature Rev. Genet.1, 116–25 (2000). ArticleCAS Google Scholar
Stockwell, B. R. Frontiers in chemical genetics. Trends Biotechnol.18, 449–455 (2000). ArticleCAS Google Scholar
Stockwell, B. R. Chemical genetic screening approaches to neurobiology. Neuron36, 559–562 (2002). ArticleCAS Google Scholar
Schreiber, S. L. The small-molecule approach to biology: chemical genetics and diversity-oriented organic synthesis make possible the systematic exploration of biology. Chem. Eng. News81, 51–61 (2003). Article Google Scholar
Schreiber, S. L. Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg. Med. Chem.6, 1127–1152 (1998). ArticleCAS Google Scholar
Kuruvilla, F. G., Shamji, A. F., Sternson, S. M., Hergenrother, P. J. & Schreiber, S. L. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature416, 653–657 (2002). ArticleADSCAS Google Scholar
Moore, P. & Clayton, J. To affinity and beyond. Nature426, 725–731 (2003). PubMed Google Scholar
Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science287, 1964–1969 (2000). ArticleADSCAS Google Scholar
Young, S. S. & Ge, N. Design of diversity and focused combinatorial libraries in drug discovery. Curr. Opin. Drug Discov. Dev.7, 318–324 (2004). CAS Google Scholar
Jimonet, P. & Jager, R. Strategies for designing GPCR-focused libraries and screening sets. Curr. Opin. Drug Discov. Dev.7, 325–333 (2004). CAS Google Scholar
Reid, R. C. et al. Countering cooperative effects in protease inhibitors using constrained beta-strand-mimicking templates in focused combinatorial libraries. J. Med. Chem.47, 1641–1651 (2004). ArticleCAS Google Scholar
Sodeoka, M. et al. Synthesis of a tetronic acid library focused on inhibitors of tyrosine and dual-specificity protein phosphatases and its evaluation regarding VHR and cdc25B inhibition. J. Med. Chem.44, 3216–3222 (2001). ArticleCAS Google Scholar
Stahura, F. L., Xue, L., Godden, J. W. & Bajorath, J. Molecular scaffold-based design and comparison of combinatorial libraries focused on the ATP-binding site of protein kinases. J. Mol. Graph Model17, 1–9, 51–2 (1999). ArticleCAS Google Scholar
Burke, M. D. & Schreiber, S. L. A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Edn Engl.43, 46–58 (2004). Article Google Scholar
Spring, D. R. Diversity-oriented synthesis; a challenge for synthetic chemists. Org. Biomol. Chem.1, 3867–3870 (2003). ArticleCAS Google Scholar
Kubota, H., Lim, J., Depew, K. M. & Schreiber, S. L. Pathway development and pilot library realization in diversity-oriented synthesis: exploring Ferrier and Pauson-Khand reactions on a glycal template. Chem. Biol.9, 265–276 (2002). ArticleCAS Google Scholar
Couve-Bonnaire, S., Chou, D. T., Gan, Z. & Arya, P. A solid-phase, library synthesis of natural-product-like derivatives from an enantiomerically pure tetrahydroquinoline scaffold. J. Comb. Chem.6, 73–77 (2004). ArticleCAS Google Scholar
Arya, P., Wei, C. Q., Barnes, M. L. & Daroszewska, M. A solid phase library synthesis of hydroxyindoline-derived tricyclic derivatives by Mitsunobu approach. J. Comb. Chem.6, 65–72 (2004). ArticleCAS Google Scholar
Kauvar, L. M., Villar, H. O., Sportsman, J. R., Higgins, D. L. & Schmidt, D. E. J. Protein affinity map of chemical space. J. Chromatog. B715, 93–102 (1998). ArticleCAS Google Scholar
Greenbaum, D. C. et al. Small molecule affinity fingerprinting. A tool for enzyme family subclassification, target identification, and inhibitor design. Chem. Biol.9, 1085–1094 (2002). ArticleCAS Google Scholar
Weinstein, J. N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science275, 343–349 (1997). ArticleCAS Google Scholar
Lakey, J. H. & Raggett, E. M. Measuring protein–protein interactions. Curr. Opin. Struct. Biol.8, 119–123 (1998). ArticleCAS Google Scholar
Gray, N. S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science281, 533–538 (1998). ArticleADSCAS Google Scholar
Salemme, F. R. Chemical genomics as an emerging paradigm for postgenomic drug discovery. Pharmacogenomics4, 257–267 (2003). ArticleCAS Google Scholar
MacBeath, G., Koehler, A. N. & Schreiber, S. L. Printing small molecules as microarrays and detecting protein–ligand interactions en masse. J. Am. Chem. Soc.121, 7967–7968 (1999). ArticleCAS Google Scholar
Winssinger, N., Ficarro, S., Schultz, P. G. & Harris, J. L. Profiling protein function with small molecule microarrays. Proc. Natl Acad. Sci. USA99, 11139–11144 (2002). ArticleADSCAS Google Scholar
Falsey, J. R., Renil, M., Park, S., Li, S. & Lam, K. S. Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug. Chem.12, 346–353 (2001). ArticleCAS Google Scholar
Vetter, D. Chemical microarrays, fragment diversity, label-free imaging by plasmon resonance—a chemical genomics approach. J. Cell Biochem.39 (suppl.), 79–84 (2002). Article Google Scholar
Birkert, O., Tunnemann, R., Jung, G. & Gauglitz, G. Label-free parallel screening of combinatorial triazine libraries using reflectometric interference spectroscopy. Anal. Chem.74, 834–840 (2002). ArticleCAS Google Scholar
Birkert, O. & Gauglitz, G. Development of an assay for label-free high-throughput screening of thrombin inhibitors by use of reflectometric interference spectroscopy. Anal. Bioanal. Chem.372, 141–147 (2002). ArticleCAS Google Scholar
Jona, G. & Snyder, M. Recent developments in analytical and functional protein microarrays. Curr. Opin. Mol. Ther.5, 271–277 (2003). CASPubMed Google Scholar
MacBeath, G. Protein microarrays and proteomics. Nature Genet.32 (suppl.), 526–532 (2002). ArticleCAS Google Scholar
Zhu, H. et al. Global analysis of protein activities using proteome chips. Science293, 2101–2105 (2001). ArticleADSCAS Google Scholar
Espejo, A., Cote, J., Bednarek, A., Richard, S. & Bedford, M. T. A protein-domain microarray identifies novel protein-protein interactions. Biochem. J.367, 697–702 (2002). ArticleCAS Google Scholar
Newman, J. R. & Keating, A. E. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science300, 2097–2101 (2003). ArticleADSCAS Google Scholar
Ziauddin, J. & Sabatini, D. M. Microarrays of cells expressing defined cDNAs. Nature411, 107–110 (2001). ArticleADSCAS Google Scholar
Ramachandran, N. et al. Self-assembling protein microarrays. Science305, 86–90 (2004). ArticleADSCAS Google Scholar
Lefurgy, S. & Cornish, V. Finding Cinderella after the ball: a three-hybrid approach to drug target identification. Chem. Biol.11, 151–153 (2004). CASPubMed Google Scholar
Liberles, S. D., Diver, S. T., Austin, D. J. & Schreiber, S. L. Inducible gene expression and protein translocation using nontoxic ligands identified by a mammalian three-hybrid screen. Proc. Natl Acad. Sci. USA94, 7825–7830 (1997). ArticleADSCAS Google Scholar
Lunn, M. R. et al. Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism. Chem. Biol.11, 1495–1503 (2004). Article Google Scholar
Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell3, 285–296 (2003). ArticleCAS Google Scholar
Wang, J. & Dreyfuss, G. A cell system with targeted disruption of the SMN gene: functional conservation of the SMN protein and dependence of Gemin2 on SMN. J. Biol. Chem.276, 9599–9605 (2001). ArticleCAS Google Scholar
Aiken, C. T., Tobin, A. J. & Schweitzer, E. S. A cell-based screen for drugs to treat Huntington's disease. Neurobiol. Dis.16, 546–555 (2004). ArticleCAS Google Scholar
Stegmaier, K. et al. Gene expression-based high-throughput screening(GE-HTS) and application to leukaemia differentiation. Nature Genet.36, 257–263 (2004). ArticleCAS Google Scholar
Kapur, R. Fluorescence imaging and engineered biosensors: functional and activity-based sensing using high content screening. Ann. NY Acad. Sci.961, 196–197 (2002). ArticleADS Google Scholar
Yarrow, J. C., Perlman, Z. E., Westwood, N. J. & Mitchison, T. J. A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol.4, 21 (2004). Article Google Scholar
Kau, T. R. et al. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell4, 463–476 (2003). ArticleCAS Google Scholar
Root, D. E., Flaherty, S. P., Kelley, B. P. & Stockwell, B. R. Biological mechanism profiling using an annotated compound library. Chem. Biol.10, 881–892 (2003). ArticleCAS Google Scholar
Seidler, J., McGovern, S. L., Doman, T. N. & Shoichet, B. K. Identification and prediction of promiscuous aggregating inhibitors among known drugs. J. Med. Chem.46, 4477–4486 (2003). ArticleCAS Google Scholar
Tuschl, T. Expanding small RNA interference. Nature Biotechnol.20, 446–448 (2002). ArticleCAS Google Scholar
Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001). ArticleADSCAS Google Scholar
Lassus, P., Rodriguez, J. & Lazebnik, Y. Confirming specificity of RNAi in mammalian cells. Sci. STKE147, PL13 (2002). Google Scholar
Root, D. E., Kelley, B. P. & Stockwell, B. R. Global analysis of large-scale chemical and biological experiments. Curr. Opin. Drug Discov. Dev.5, 355–360 (2002). CAS Google Scholar
Burke, T. J., Loniello, K. R., Beebe, J. A. & Ervin, K. M. Development and application of fluorescence polarization assays in drug discovery. Comb. Chem. High Throughput Screen.6, 183–194 (2003). ArticleCAS Google Scholar
Timasheff, S. N., Andreu, J. M. & Na, G. C. Physical and spectroscopic methods for the evaluation of the interactions of antimitotic agents with tubulin. Pharmacol. Ther.52, 191–210 (1991). ArticleCAS Google Scholar
Bulseco, D. A. & Wolf, D. E. Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells. Methods Cell Biol.72, 465–498 (2003). Article Google Scholar
Misra, R. Modern drug development from traditional medicinal plants using radioligand receptor-binding assays. Med. Res. Rev.18, 383–402 (1998). ArticleCAS Google Scholar
Hicks, R. P. Recent advances in NMR: expanding its role in rational drug design. Curr. Med. Chem.8, 627–650 (2001). ArticleCAS Google Scholar
Siegel, M. M. Early discovery drug screening using mass spectrometry. Curr. Top. Med. Chem.2, 13–33 (2002). ArticleCAS Google Scholar
Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem.377, 528–539 (2003). ArticleCAS Google Scholar
Jelesarov, I. & Bosshard, H. R. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recogn.12, 3–18 (1999). ArticleCAS Google Scholar
Burke, M. D., Berger, E. M. & Schreiber, S. L. Generating diverse skeletons of small molecules combinatorially. Science302, 613–618 (2003). ArticleADSCAS Google Scholar
Oprea, T. I. & Matter, H. Integrating virtual screening in lead discovery. Curr. Opin. Chem. Biol.8, 349–358 (2004). ArticleCAS Google Scholar
Ewing, T. J., Makino, S., Skillman, A. G. & Kuntz, I. D. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des.15, 411–428 (2001). ArticleADSCAS Google Scholar
Osterberg, F., Morris, G. M., Sanner, M. F., Olson, A. J. & Goodsell, D. S. Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins46, 34–40 (2002). ArticleCAS Google Scholar
Kramer, B., Rarey, M. & Lengauer, T. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins37, 228–241 (1999). ArticleCAS Google Scholar
Halgren, T. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem.47, 1750–1759 (2004). ArticleCAS Google Scholar
Vangrevelinghe, E. et al. Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. J. Med. Chem.46, 2656–2662 (2003). ArticleCAS Google Scholar
Peng, H. et al. Identification of novel inhibitors of BCR-ABL tyrosine kinase via virtual screening. Bioorg. Med. Chem. Lett.13, 3693–3699 (2003). ArticleCAS Google Scholar
Bajorath, J. Integration of virtual and high-throughput screening. Nature Rev. Drug Discov.1, 882–894 (2002). ArticleCAS Google Scholar
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.46, 3–26 (2001). ArticleCAS Google Scholar
Hann, M. M. & Oprea, T. I. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol.8, 255–263 (2004). ArticleCAS Google Scholar