The Arabidopsis F-box protein TIR1 is an auxin receptor (original) (raw)

References

  1. Leyser, O. Molecular genetics of auxin signaling. Annu. Rev. Plant Biol. 53, 377–398 (2002)
    Article CAS Google Scholar
  2. Berleth, T., Krogan, N. T. & Scarpella, E. Auxin signals—turning genes on and turning cells around. Curr. Opin. Plant Biol. 7, 553–563 (2004)
    Article CAS Google Scholar
  3. Friml, J. Auxin transport—shaping the plant. Curr. Opin. Plant Biol. 6, 7–12 (2003)
    Article CAS Google Scholar
  4. Abel, S. & Theologis, A. Early genes and auxin action. Plant Physiol. 111, 9–17 (1996)
    Article CAS Google Scholar
  5. Napier, R. M., David, K. M. & Perrot-Rechenmann, C. P. A short history of auxin-binding proteins. Plant Mol. Biol. 49, 339–348 (2002)
    Article CAS Google Scholar
  6. Gray, W. M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271–276 (2001)
    Article ADS CAS Google Scholar
  7. Zenser, N., Ellsmore, A., Leasure, C. & Callis, J. Auxin modulates the degradation rate of Aux/IAA proteins. Proc. Natl Acad. Sci. USA 98, 11795–11800 (2001)
    Article ADS CAS Google Scholar
  8. Tiwari, S. B., Wang, X.-J., Hagen, G. & Guilfoyle, T. J. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13, 2809–2822 (2001)
    Article CAS Google Scholar
  9. Tian, Q., Nagpal, P. & Reed, J. W. Regulation of Arabidopsis SHY2/IAA3 protein turnover. Plant J. 36, 643–651 (2003)
    Article CAS Google Scholar
  10. Liscum, E. & Reed, J. W. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol. Biol. 49, 387–400 (2002)
    Article CAS Google Scholar
  11. Ulmasov, T., Hagen, G. & Guilfoyle, T. J. Activation and repression of transcription by auxin-response factors. Proc. Natl Acad. Sci. USA 11, 5844–5849 (1999)
    Article ADS Google Scholar
  12. Tiwari, S. B., Hagen, G. & Guilfoyle, T. J. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16, 533–543 (2004)
    Article CAS Google Scholar
  13. Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999)
    Article CAS Google Scholar
  14. Moon, J., Parry, G. & Estelle, M. The ubiquitin–proteasome pathway and plant development. Plant Cell 16, 3181–3195 (2004)
    Article CAS Google Scholar
  15. Dharmasiri, N., Dharmisiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature doi:10.1038/nature03543 (this issue)
  16. Yang, X. et al. The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant J. 40, 772–782 (2004)
    Article CAS Google Scholar
  17. Gray, W. M. et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13, 1678–1691 (1999)
    Article CAS Google Scholar
  18. Gray, W. M., Hellmann, H., Dharmasiri, S. & Estelle, M. Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell 14, 2137–2144 (2002)
    Article CAS Google Scholar
  19. Ruegger, M. et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev. 12, 198–207 (1998)
    Article CAS Google Scholar
  20. Lincoln, C., Britton, J. H. & Estelle, M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2, 1071–1080 (1990)
    Article CAS Google Scholar
  21. Ramos, J. A., Zenser, N., Leyser, O. & Callis, J. Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13, 2349–2360 (2001)
    Article CAS Google Scholar
  22. Kepinski, S. & Leyser, O. Auxin-induced SCFTIR1–Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl Acad. Sci. USA 101, 12381–12386 (2004)
    Article ADS CAS Google Scholar
  23. Dharmasiri, N., Dharmasiri, S., Jones, A. M. & Estelle, M. Auxin action in a cell-free system. Curr. Biol. 13, 1418–1422 (2003)
    Article CAS Google Scholar
  24. Isaacs, H. V., Pownall, M. E. & Slack, J. M. Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3. EMBO J. 17, 3413–3427 (1998)
    Article CAS Google Scholar
  25. Schulman, B. A. et al. Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature 408, 381–386 (2000)
    Article ADS CAS Google Scholar
  26. Leblanc, N. et al. A novel immunological approach establishes that the auxin-binding protein, Nt-abp1, is an element involved in auxin signaling at the plasma membrane. J. Biol. Chem. 274, 28314–28320 (1999)
    Article CAS Google Scholar
  27. Risseeuw, E. P. et al. Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J. 34, 753–767 (2003)
    Article CAS Google Scholar
  28. Gagne, J. M., Downes, B. P., Shiu, S. H., Durski, A. M. & Vierstra, R. D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl Acad. Sci. USA 99, 11519–11524 (2004)
    Article ADS Google Scholar
  29. Smalle, J. & Vierstra, R. D. The ubiquitin 26s proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55, 555–590 (2004)
    Article CAS Google Scholar
  30. Semple, C. A. M. RIKEN GER Group, GSL Members. The comparative proteomics of ubiquitination in mouse. Genome Res. 13, 1389–1394 (2003)
    Article CAS Google Scholar
  31. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) 2nd edn (North-Holland, Amsterdam, 1967)
    Google Scholar

Download references