The Arabidopsis F-box protein TIR1 is an auxin receptor (original) (raw)
References
Leyser, O. Molecular genetics of auxin signaling. Annu. Rev. Plant Biol.53, 377–398 (2002) ArticleCAS Google Scholar
Berleth, T., Krogan, N. T. & Scarpella, E. Auxin signals—turning genes on and turning cells around. Curr. Opin. Plant Biol.7, 553–563 (2004) ArticleCAS Google Scholar
Friml, J. Auxin transport—shaping the plant. Curr. Opin. Plant Biol.6, 7–12 (2003) ArticleCAS Google Scholar
Abel, S. & Theologis, A. Early genes and auxin action. Plant Physiol.111, 9–17 (1996) ArticleCAS Google Scholar
Napier, R. M., David, K. M. & Perrot-Rechenmann, C. P. A short history of auxin-binding proteins. Plant Mol. Biol.49, 339–348 (2002) ArticleCAS Google Scholar
Gray, W. M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature414, 271–276 (2001) ArticleADSCAS Google Scholar
Zenser, N., Ellsmore, A., Leasure, C. & Callis, J. Auxin modulates the degradation rate of Aux/IAA proteins. Proc. Natl Acad. Sci. USA98, 11795–11800 (2001) ArticleADSCAS Google Scholar
Tiwari, S. B., Wang, X.-J., Hagen, G. & Guilfoyle, T. J. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell13, 2809–2822 (2001) ArticleCAS Google Scholar
Tian, Q., Nagpal, P. & Reed, J. W. Regulation of Arabidopsis SHY2/IAA3 protein turnover. Plant J.36, 643–651 (2003) ArticleCAS Google Scholar
Liscum, E. & Reed, J. W. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol. Biol.49, 387–400 (2002) ArticleCAS Google Scholar
Ulmasov, T., Hagen, G. & Guilfoyle, T. J. Activation and repression of transcription by auxin-response factors. Proc. Natl Acad. Sci. USA11, 5844–5849 (1999) ArticleADS Google Scholar
Tiwari, S. B., Hagen, G. & Guilfoyle, T. J. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell16, 533–543 (2004) ArticleCAS Google Scholar
Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol.15, 435–467 (1999) ArticleCAS Google Scholar
Moon, J., Parry, G. & Estelle, M. The ubiquitin–proteasome pathway and plant development. Plant Cell16, 3181–3195 (2004) ArticleCAS Google Scholar
Dharmasiri, N., Dharmisiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature doi:10.1038/nature03543 (this issue)
Yang, X. et al. The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant J.40, 772–782 (2004) ArticleCAS Google Scholar
Gray, W. M. et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev.13, 1678–1691 (1999) ArticleCAS Google Scholar
Gray, W. M., Hellmann, H., Dharmasiri, S. & Estelle, M. Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell14, 2137–2144 (2002) ArticleCAS Google Scholar
Ruegger, M. et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev.12, 198–207 (1998) ArticleCAS Google Scholar
Lincoln, C., Britton, J. H. & Estelle, M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell2, 1071–1080 (1990) ArticleCAS Google Scholar
Ramos, J. A., Zenser, N., Leyser, O. & Callis, J. Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell13, 2349–2360 (2001) ArticleCAS Google Scholar
Kepinski, S. & Leyser, O. Auxin-induced SCFTIR1–Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl Acad. Sci. USA101, 12381–12386 (2004) ArticleADSCAS Google Scholar
Dharmasiri, N., Dharmasiri, S., Jones, A. M. & Estelle, M. Auxin action in a cell-free system. Curr. Biol.13, 1418–1422 (2003) ArticleCAS Google Scholar
Isaacs, H. V., Pownall, M. E. & Slack, J. M. Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3. EMBO J.17, 3413–3427 (1998) ArticleCAS Google Scholar
Schulman, B. A. et al. Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature408, 381–386 (2000) ArticleADSCAS Google Scholar
Leblanc, N. et al. A novel immunological approach establishes that the auxin-binding protein, Nt-abp1, is an element involved in auxin signaling at the plasma membrane. J. Biol. Chem.274, 28314–28320 (1999) ArticleCAS Google Scholar
Risseeuw, E. P. et al. Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J.34, 753–767 (2003) ArticleCAS Google Scholar
Gagne, J. M., Downes, B. P., Shiu, S. H., Durski, A. M. & Vierstra, R. D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl Acad. Sci. USA99, 11519–11524 (2004) ArticleADS Google Scholar
Smalle, J. & Vierstra, R. D. The ubiquitin 26s proteasome proteolytic pathway. Annu. Rev. Plant Biol.55, 555–590 (2004) ArticleCAS Google Scholar
Semple, C. A. M. RIKEN GER Group, GSL Members. The comparative proteomics of ubiquitination in mouse. Genome Res.13, 1389–1394 (2003) ArticleCAS Google Scholar
Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) 2nd edn (North-Holland, Amsterdam, 1967) Google Scholar