Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes (original) (raw)

References

  1. Despres, J. P. et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N. Engl. J. Med. 334, 952–957 (1996)
    Article CAS PubMed Google Scholar
  2. Shepherd, P. R. & Kahn, B. B. Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus. N. Engl. J. Med. 341, 248–257 (1999)
    Article CAS PubMed Google Scholar
  3. DeFronzo, R. A. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev. 5, 171–269 (1997)
    Google Scholar
  4. Shepherd, P. R. et al. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J. Biol. Chem. 268, 22243–22246 (1993)
    CAS PubMed Google Scholar
  5. Abel, E. D. et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729–733 (2001)
    Article CAS ADS PubMed Google Scholar
  6. Tozzo, E., Gnudi, L. & Kahn, B. B. Amelioration of insulin resistance in streptozotocin diabetic mice by transgenic overexpression of GLUT4 driven by an adipose-specific promoter. Endocrinology 138, 1604–1611 (1997)
    Article CAS PubMed Google Scholar
  7. Carvalho, E., Kotani, K., Peroni, O. & Kahn, B. B. Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am. J. Physiol. Endocrinol. Metab. doi:10.1152/ajpendo.0016.2005 (2005)
  8. Kershaw, E. E. & Flier, J. S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89, 2548–2556 (2004)
    Article CAS PubMed Google Scholar
  9. Quadro, L. et al. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J. 18, 4633–4644 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  10. Minokoshi, Y., Kahn, C. R. & Kahn, B. B. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J. Biol. Chem. 278, 33609–33612 (2003)
    Article CAS PubMed Google Scholar
  11. Kitamura, T., Kahn, C. R. & Accili, D. Insulin receptor knockout mice. Annu. Rev. Physiol. 65, 313–332 (2003)
    Article CAS PubMed Google Scholar
  12. Blaner, W. S. Retinol-binding protein: the serum transport protein for vitamin A. Endocr. Rev. 10, 308–316 (1989)
    Article CAS PubMed Google Scholar
  13. Kotani, K., Peroni, O. D., Minokoshi, Y., Boss, O. & Kahn, B. B. GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization. J. Clin. Invest. 114, 1666–1675 (2004)
    Article CAS PubMed PubMed Central Google Scholar
  14. Masuzaki, H. et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 294, 2166–2170 (2001)
    Article CAS ADS PubMed Google Scholar
  15. Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004)
    Article CAS ADS PubMed Google Scholar
  16. Nikoulina, S. E. et al. Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes 49, 263–271 (2000)
    Article CAS PubMed Google Scholar
  17. Lee, C. H., Olson, P. & Evans, R. M. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144, 2201–2207 (2003)
    Article CAS PubMed Google Scholar
  18. Kotani, K., Kim, Y. B., Peroni, O., Mundt, A. & Kahn, B. B. Rosiglitazone treatment normalizes glucose tolerance in adipose-specific GLUT4 knockout mice but renders muscle-specific GLUT4 knockout more diabetic [abstract]. Diabetes 50, A274 (2001)
    Google Scholar
  19. Quadro, L. et al. Muscle expression of human retinol-binding protein (RBP). Suppression of the visual defect of RBP knockout mice. J. Biol. Chem. 277, 30191–30197 (2002)
    Article CAS PubMed Google Scholar
  20. Naylor, H. M. & Newcomer, M. E. The structure of human retinol-binding protein (RBP) with its carrier protein transthyretin reveals an interaction with the carboxy terminus of RBP. Biochemistry 38, 2647–2653 (1999)
    Article CAS PubMed Google Scholar
  21. Kato, M., Kato, K., Blaner, W. S., Chertow, B. S. & Goodman, D. S. Plasma and cellular retinoid-binding proteins and transthyretin (prealbumin) are all localized in the islets of Langerhans in the rat. Proc. Natl Acad. Sci. USA 82, 2488–2492 (1985)
    Article CAS ADS PubMed PubMed Central Google Scholar
  22. Malpeli, G., Folli, C. & Berni, R. Retinoid binding to retinol-binding protein and the interference with the interaction with transthyretin. Biochim. Biophys. Acta 1294, 48–54 (1996)
    Article PubMed Google Scholar
  23. Mothe, I. & Van Obberghen, E. Phosphorylation of insulin receptor substrate-1 on multiple serine residues, 612, 632, 662, and 731, modulates insulin action. J. Biol. Chem. 271, 11222–11227 (1996)
    Article CAS PubMed Google Scholar
  24. Anai, M. et al. Enhanced insulin-stimulated activation of phosphatidylinositol 3-kinase in the liver of high-fat-fed rats. Diabetes 48, 158–169 (1999)
    Article CAS PubMed Google Scholar
  25. Pagliassotti, M. J., Kang, J., Thresher, J. S., Sung, C. K. & Bizeau, M. E. Elevated basal PI 3-kinase activity and reduced insulin signalling in sucrose-induced hepatic insulin resistance. Am. J. Physiol. Endocrinol. Metab. 282, E170–E176 (2002)
    Article CAS PubMed Google Scholar
  26. Shin, D. J., Odom, D. P., Scribner, K. B., Ghoshal, S. & McGrane, M. M. Retinoid regulation of the phosphoenolpyruvate carboxykinase gene in liver. Mol. Cell. Endocrinol. 195, 39–54 (2002)
    Article CAS PubMed Google Scholar
  27. Kahn, C. R., Lauris, V., Koch, S., Crettaz, M. & Granner, D. K. Acute and chronic regulation of phosphoenolpyruvate carboxykinase mRNA by insulin and glucose. Mol. Endocrinol. 3, 840–845 (1989)
    Article CAS PubMed Google Scholar
  28. Wang, J. C., Stafford, J. M., Scott, D. K., Sutherland, C. & Granner, D. K. The molecular physiology of hepatic nuclear factor 3 in the regulation of gluconeogenesis. J. Biol. Chem. 275, 14717–14721 (2000)
    Article CAS PubMed Google Scholar
  29. Basualdo, C. G., Wein, E. E. & Basu, T. K. Vitamin A (retinol) status of First Nation adults with non-insulin-dependent diabetes mellitus. J. Am. Coll. Nutr. 16, 39–45 (1997)
    Article CAS PubMed Google Scholar
  30. Abahusain, M. A., Wright, J., Dickerson, J. W. & de Vol, E. B. Retinol, alpha-tocopherol and carotenoids in diabetes. Eur. J. Clin. Nutr. 53, 630–635 (1999)
    Article CAS PubMed Google Scholar
  31. Meigs, J. B., Panhuysen, C. I., Myers, R. H., Wilson, P. W. & Cupples, L. A. A genome-wide scan for loci linked to plasma levels of glucose and HbA1c in a community-based sample of Caucasian pedigrees: The Framingham Offspring Study. Diabetes 51, 833–840 (2002)
    Article CAS PubMed Google Scholar
  32. Duggirala, R. et al. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am. J. Hum. Genet. 64, 1127–1140 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  33. Tsutsumi, C. et al. Retinoids and retinoid-binding protein expression in rat adipocytes. J. Biol. Chem. 267, 1805–1810 (1992)
    CAS PubMed Google Scholar
  34. Zovich, D. C. et al. Differentiation-dependent expression of retinoid-binding proteins in BFC-1β adipocytes. J. Biol. Chem. 267, 13884–13889 (1992)
    CAS PubMed Google Scholar
  35. Pedersen, O., Kahn, C. R. & Kahn, B. B. Divergent regulation of the Glut 1 and Glut 4 glucose transporters in isolated adipocytes from Zucker rats. J. Clin. Invest. 89, 1964–1973 (1992)
    Article CAS PubMed PubMed Central Google Scholar
  36. Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J. 10, 940–954 (1996)
    Article CAS PubMed Google Scholar
  37. Koistinen, H. A. et al. Dyslipidemia and a reversible decrease in insulin sensitivity induced by therapy with 13-_cis_-retinoic acid. Diabetes Metab. Res. Rev. 17, 391–395 (2001)
    Article CAS PubMed Google Scholar
  38. Rodondi, N. et al. High risk for hyperlipidemia and the metabolic syndrome after an episode of hypertriglyceridemia during 13-cis retinoic acid therapy for acne: a pharmacogenetic study. Ann. Intern. Med. 136, 582–589 (2002)
    Article CAS PubMed Google Scholar
  39. Kliewer, S. A., Xu, H. E., Lambert, M. H. & Willson, T. M. Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog. Horm. Res. 56, 239–263 (2001)
    Article CAS PubMed Google Scholar
  40. Sivaprasadarao, A. & Findlay, J. B. The interaction of retinol-binding protein with its plasma-membrane receptor. Biochem. J. 255, 561–569 (1988)
    CAS PubMed PubMed Central Google Scholar
  41. Matarese, V. & Lodish, H. F. Specific uptake of retinol-binding protein by variant F9 cell lines. J. Biol. Chem. 268, 18859–18865 (1993)
    CAS PubMed Google Scholar
  42. Christensen, E. I. et al. Evidence for an essential role of megalin in transepithelial transport of retinol. J. Am. Soc. Nephrol. 10, 685–695 (1999)
    CAS PubMed Google Scholar
  43. Berni, R., Clerici, M., Malpeli, G., Cleris, L. & Formelli, F. Retinoids: in vitro interaction with retinol-binding protein and influence on plasma retinol. FASEB J. 7, 1179–1184 (1993)
    Article CAS PubMed Google Scholar
  44. Monaco, H. L. The transthyretin-retinol-binding protein complex. Biochim. Biophys. Acta 1482, 65–72 (2000)
    Article CAS PubMed Google Scholar
  45. Sheikh, M. S. et al. _N_-(4-hydroxyphenyl)retinamide (4-HPR)-mediated biological actions involve retinoid receptor-independent pathways in human breast carcinoma. Carcinogenesis 16, 2477–2486 (1995)
    Article CAS PubMed Google Scholar
  46. Um, S. J. et al. Antiproliferative mechanism of retinoid derivatives in ovarian cancer cells. Cancer Lett. 174, 127–134 (2001)
    Article CAS PubMed Google Scholar
  47. Shen, Q., Cline, G. W., Shulman, G. I., Leibowitz, M. D. & Davies, P. J. Effects of rexinoids on glucose transport and insulin-mediated signalling in skeletal muscles of diabetic (db/db) mice. J. Biol. Chem. 279, 19721–19731 (2004)
    Article CAS PubMed Google Scholar
  48. Subcommittee on Laboratory Animal Nutrition, Committee on Animal Nutrition, Board on Agriculture, National Research Council. Nutrient Requirements of Laboratory Animals 4th revised edn, 92 (National Academies Press, Washington DC, 1995)
    Google Scholar
  49. Wang, T. T., Lewis, K. C. & Phang, J. M. Production of human plasma retinol-binding protein in Escherichia coli. Gene 133, 291–294 (1993)
    Article CAS PubMed Google Scholar
  50. Xie, Y., Lashuel, H. A., Miroy, G. J., Dikler, S. & Kelly, J. W. Recombinant human retinol-binding protein refolding, native disulfide formation, and characterization. Protein Expr. Purif. 14, 31–37 (1998)
    Article PubMed Google Scholar

Download references