Muratani, M. & Tansey, W. P. How the ubiquitin–proteasome system controls transcription. Nature Rev. Mol. Cell Biol.4, 192–201 (2003) ArticleCAS Google Scholar
Lipford, J. R. & Deshaies, R. J. Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nature Cell Biol.5, 845–850 (2003) ArticleCAS Google Scholar
Lee, D. H. & Goldberg, A. L. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol.8, 397–403 (1998) ArticleCAS Google Scholar
Meimoun, A. et al. Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol. Biol. Cell11, 915–927 (2000) ArticleCAS Google Scholar
Finley, D. et al. Inhibition of proteolysis and cell-cycle progression in a multiubiquitination-deficient yeast mutant. Mol. Cell. Biol.14, 5501–5509 (1994) ArticleCAS Google Scholar
Chi, Y. et al. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev.15, 1078–1092 (2001) ArticleCAS Google Scholar
Adams, J. & Kauffman, M. Development of the proteasome inhibitor Velcade (bortezomib). Cancer Invest.22, 304–311 (2004) ArticleCAS Google Scholar
Mitsiades, N. et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc. Natl Acad. Sci. USA99, 14374–14379 (2002) ArticleADSCAS Google Scholar
Fleming, J. A. et al. Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proc. Natl Acad. Sci. USA99, 1461–1466 (2002) ArticleADSCAS Google Scholar
Hinnebusch, A. G. & Natarajan, K. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot. Cell1, 22–32 (2002) ArticleCAS Google Scholar
Kornitzer, D., Raboy, B., Kulka, R. G. & Fink, G. R. Regulated degradation of the transcription factor GCN4. EMBO J.13, 6021–6030 (1994) ArticleCAS Google Scholar
Albrecht, G., Mosch, H. U., Hoffmann, B., Reusser, U. & Braus, G. H. Monitoring the Gcn4 protein-mediated response in the yeast Saccharomyces cerevisiae. J. Biol. Chem.273, 12696–12702 (1998) ArticleCAS Google Scholar
Hilt, W., Enenkel, C., Gruhler, A., Singer, T. & Wolf, D. H. The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydrolyzing activity. Mutations link the proteasome to stress- and ubiquitin-dependent proteolysis. J. Biol. Chem.268, 3479–3486 (1993) CASPubMed Google Scholar
Salghetti, S. E., Caudy, A. A., Chenoweth, J. G. & Tansey, W. P. Regulation of transcriptional activation domain function by ubiquitin. Science293, 1651–1653 (2001) ArticleADSCAS Google Scholar
Kim, S., Herbst, A., Tworkowski, K., Salghetti, S. & Tansey, W. Skp2 regulates Myc protein stability and activity. Mol. Cell11, 1177–1188 (2003) ArticleCAS Google Scholar
von der Lehr, N. et al. The F-Box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell11, 1177–1188 (2003) Article Google Scholar
Aparicio, O., Geisberg, J. & Struhl, K. in Current Protocols in Molecular Biology (eds Ausubel, F. M. et al.) 21.3.1–21.3.12 (Wiley, New York, 2004) Google Scholar
Stitzel, M. L., Durso, R. & Reese, J. C. The proteasome regulates the UV-induced activation of the AP-1-like transcription factor Gcn4. Genes Dev.15, 128–133 (2001) ArticleCAS Google Scholar
Reid, G. et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERα on responsive promoters is an integral feature of estrogen signalling. Mol. Cell11, 695–707 (2003) ArticleCAS Google Scholar
Gonzalez, F., Delahodde, A., Kodadek, T. & Johnston, S. A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science296, 548–550 (2002) ArticleADSCAS Google Scholar
Morris, M. C. et al. Cks1-dependent proteasome recruitment and activation of CDC20 transcription in budding yeast. Nature423, 1009–1013 (2003) ArticleADSCAS Google Scholar
Verma, R. et al. Deubiquitination and degradation of proteins by the 26S proteasome requires the Rpn11 metalloprotease motif. Science298, 611–615 (2002) ArticleADSCAS Google Scholar
Muratani, M., Kung, C., Shokat, K. M. & Tansey, W. P. The F box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing. Cell120, 887–899 (2005) ArticleCAS Google Scholar
Hirst, M., Kobor, M. S., Kuriakose, N., Greenblatt, J. & Sadowski, I. GAL4 is regulated by the RNA polymerase II holoenzyme-associated cyclin-dependent protein kinase SRB10/CDK8. Mol. Cell3, 673–678 (1999) ArticleCAS Google Scholar
Guthrie, C. & Fink, G. R. Guide to Yeast Genetics and Molecular Biology (Academic, San Diego, 1991) Google Scholar
Drysdale, C. M. et al. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol. Cell. Biol.15, 1220–1233 (1995) ArticleCAS Google Scholar