Identification of a tumour suppressor network opposing nuclear Akt function (original) (raw)
Luo, J., Manning, B. D. & Cantley, L. C. Targeting the PI3K–Akt pathway in human cancer: rationale and promise. Cancer Cell4, 257–262 (2003) ArticleCASPubMed Google Scholar
Brenkman, A. B. & Burgering, B. M. FoxO3a eggs on fertility and aging. Trends Mol. Med.9, 464–467 (2003) ArticleCASPubMed Google Scholar
Salomoni, P. & Pandolfi, P. P. The role of PML in tumor suppression. Cell108, 165–170 (2002) ArticleCASPubMed Google Scholar
Gurrieri, C. et al. Loss of the tumour suppressor PML in human cancers of multiple histologic origins. J. Natl Cancer Inst.96, 269–279 (2004) ArticleCASPubMed Google Scholar
Goel, A. et al. Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res.64, 3014–3021 (2004) ArticleCASPubMed Google Scholar
Porkka, K. P. & Visakorpi, T. Molecular mechanisms of prostate cancer. Eur. Urol.45, 683–691 (2004) ArticleCASPubMed Google Scholar
Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet.19, 348–355 (1998) ArticleCASPubMed Google Scholar
Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA96, 1563–1568 (1999) ArticleADSCASPubMedPubMed Central Google Scholar
Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol.8, 1169–1178 (1998) ArticleCASPubMed Google Scholar
Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/- mice. Science285, 2122–2125 (1999) ArticleCASPubMed Google Scholar
Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell4, 209–221 (2003) ArticleCASPubMed Google Scholar
Di Cristofano, A., De Acetis, M., Koff, A., Cordon-Cardo, C. & Pandolfi, P. P. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nature Genet.27, 222–224 (2001) ArticleCASPubMed Google Scholar
Maehama, T., Taylor, G. S. & Dixon, J. E. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu. Rev. Biochem.70, 247–279 (2001) ArticleCASPubMed Google Scholar
Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell95, 29–39 (1998) ArticleCASPubMed Google Scholar
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science307, 1098–1101 (2005) ArticleADSCASPubMed Google Scholar
Brazil, D. P., Yang, Z. Z. & Hemmings, B. A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci.29, 233–242 (2004) ArticleCASPubMed Google Scholar
Tran, H., Brunet, A., Griffith, E. C. & Greenberg, M. E. The many forks in FOXO's road. Sci. STKE2003, RE5 (2003) PubMed Google Scholar
Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell96, 857–868 (1999) ArticleCASPubMed Google Scholar
Castrillon, D. H., Miao, L., Kollipara, R., Horner, J. W. & DePinho, R. A. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science301, 215–218 (2003) ArticleADSCASPubMed Google Scholar
Hosaka, T. et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc. Natl Acad. Sci. USA101, 2975–2980 (2004) ArticleADSCASPubMedPubMed Central Google Scholar
Millward, T. A., Zolnierowicz, S. & Hemmings, B. A. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci.24, 186–191 (1999) ArticleCASPubMed Google Scholar
Gao, T., Furnari, F. & Newton, A. C. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell18, 13–24 (2005) ArticleCASPubMed Google Scholar
Janssens, V., Goris, J. & Van Hoof, C. PP2A: the expected tumor suppressor. Curr. Opin. Genet. Dev.15, 34–41 (2005) ArticleCASPubMed Google Scholar
Li, L., Ren, C. H., Tahir, S. A., Ren, C. & Thompson, T. C. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol. Cell. Biol.23, 9389–9404 (2003) ArticleCASPubMedPubMed Central Google Scholar
Wang, Z. G. et al. PML is essential for multiple apoptotic pathways. Nature Genet.20, 266–272 (1998) ArticleCASPubMed Google Scholar
Guo, A. et al. The function of PML in p53-dependent apoptosis. Nature Cell Biol.2, 730–736 (2000) ArticleCASPubMed Google Scholar
Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science303, 2011–2015 (2004) ArticleADSCASPubMed Google Scholar