A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors (original) (raw)

References

  1. Rizki, T. M. The circulatory system and associated cells and tissues. In The Genetics and Biology of Drosophila (eds Ashburner, M. and Wright, T. R. F.) 397–452 (Academic Press, London, 1978)
    Google Scholar
  2. el Shatoury, H. H. The structure of the lymph gland of Drosophila larvae. Roux Arch. EntwMech. Organ. 147, 489–495 (1955)
    Article CAS Google Scholar
  3. Evans, C. J. Hartenstein, V. & Banerjee, U. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev. Cell 5, 673–690 (2003)
    Article CAS Google Scholar
  4. Jung, S. H., Evans, C. J., Uemura, C. & Banerjee, U. The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132, 2521–2533 (2005)
    Article CAS Google Scholar
  5. Lebestky, T., Jung, S. H. & Banerjee, U. A Serrate-expressing signaling center controls Drosophila hematopoiesis. Genes Dev. 17, 348–353 (2003)
    Article CAS Google Scholar
  6. Mandal, L., Banerjee, U. & Hartenstein, V. Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nature Genet. 36, 1019–1023 (2004)
    Article CAS Google Scholar
  7. Lo, P. C., Skeath, J. B., Gajewski, K., Schulz, R. A. & Frasch, M. Homeotic genes autonomously specify the anteroposterior subdivision of the Drosophila dorsal vessel into aorta and heart. Dev. Biol. 251, 307–319 (2002)
    Article CAS Google Scholar
  8. Ryan, K. M., Hoshizaki, D. K. & Cripps, R. M. Homeotic selector genes control the patterning of seven-up expressing cells in the Drosophila dorsal vessel. Mech. Dev. 122, 1023–1033 (2005)
    Article CAS Google Scholar
  9. Crozatier, M., Ubeda, J. M., Vincent, A. & Meister, M. Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol. 8, E196 (2004)
    Article Google Scholar
  10. Casares, F. & Mann, R. S. The ground state of the ventral appendage in Drosophila. Science 293, 1477–1480 (2001)
    Article ADS CAS Google Scholar
  11. Hisa, T. et al. Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. EMBO J 23, 450–459 (2004)
    Article CAS Google Scholar
  12. Azcoitia, V., Aracil, M., Martinez, A. C. & Torres, M. The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Dev. Biol. 280, 307–320 (2005)
    Article CAS Google Scholar
  13. Schnabel, C. A., Jacobs, Y. & Cleary, M. L. HoxA9-mediated immortalization of myeloid progenitors requires functional interactions with TALE cofactors Pbx and Meis. Oncogene 19, 608–616 (2000)
    Article CAS Google Scholar
  14. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006)
    Article ADS CAS Google Scholar
  15. Song, X., Zhu, C. H., Doan, C. & Xie, T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296, 1855–1857 (2002)
    Article ADS CAS Google Scholar
  16. Kimble, J. & Crittenden, S. L. Germline proliferation and its control. In WormBook (eds The C. elegans Research Community), doi/10.1895/wormbook.1.13.1 (15 August, 2005)
    Google Scholar
  17. Spradling, A., Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature 414, 98–104 (2001)
    Article ADS CAS Google Scholar
  18. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003)
    Article ADS CAS Google Scholar
  19. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003)
    Article ADS CAS Google Scholar
  20. Yamashita, Y. M., Fuller, M. T. & Jones, D. L. Signaling in stem cell niches: lessons from the Drosophila germline. J. Cell Sci. 118, 665–672 (2005)
    Article CAS Google Scholar
  21. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004)
    Article ADS CAS Google Scholar
  22. Abbott, M. K. & Kauffman, T. C. The relationship between the functional complexity and the molecular organization of Antennapedia locus of Drosophila melanogaster. Genetics 114, 919–942 (1986)
    CAS PubMed PubMed Central Google Scholar
  23. Lum, L. & Beachy, P. A. The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759 (2004)
    Article ADS CAS Google Scholar
  24. Chuang, P. T. & Kornberg, T. B. On the range of hh signaling. Curr. Opin. Genet. Dev. 10, 515–522 (2002)
    Article Google Scholar
  25. Crittenden, S. L., Leonhard, K. A., Byrd, D. T. & Kimble, J. Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol. Biol. Cell 17, 3051–3061 (2006)
    Article CAS Google Scholar
  26. Abramovich, C. & Humphries, R. K. Hox regulation of normal and leukemic hematopoietic stem cells. Curr. Opin. Hematol. 12, 210–216 (2005)
    Article CAS Google Scholar
  27. Kieusseian, A. et al. Expression of Pitx2 in stromal cells is required for normal hematopoiesis. Blood 107, 492–500 (2006)
    Article CAS Google Scholar
  28. Zhang, Y. & Kalderon, D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410, 599–604 (2001)
    Article ADS CAS Google Scholar
  29. Gering, M. & Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev. Cell 8, 389–400 (2005)
    Article CAS Google Scholar
  30. Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunol. 2, 172–180 (2001)
    Article CAS Google Scholar

Download references