Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding (original) (raw)

References

  1. Schmidt-Ullrich, R. & Paus, R. Molecular principles of hair follicle induction and morphogenesis. Bioessays 27, 247– 261 (2005)
    Article CAS PubMed Google Scholar
  2. Billingham, R. E. & Russell, P. S. Incomplete wound contracture and the phenomenon of hair neogenesis in rabbit's skin. Nature 177, 791– 792 (1956)
    Article ADS CAS PubMed Google Scholar
  3. Breedis, C. Regeneration of hair follicles and sebaceous glands from epithelium of scars in the rabbit. Cancer Res. 14, 575– 579 (1954)
    CAS PubMed Google Scholar
  4. Lacassagne, A. & Latarjet, R. Action of methylcholanthrene on certain scars of the skin in mice. Cancer Res. 6, 183– 188 (1946)
    CAS PubMed Google Scholar
  5. Kligman, A. M. & Strauss, J. S. The formation of vellus hair follicles from human adult epidermis. J. Invest. Dermatol. 27, 19– 23 (1956)
    Article CAS PubMed Google Scholar
  6. Straile, W. E. in Advances in Biology of Skin Vol. 9 (eds Montagna, W. & Dobson, R.) 369– 391 (Pergamon Press, New York, 1967)
    Google Scholar
  7. Cotsarelis, G. Epithelial stem cells: a folliculocentric view. J. Invest. Dermatol. 126, 1459– 1468 (2006)
    Article CAS PubMed Google Scholar
  8. McGowan, K. M. & Coulombe, P. A. Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J. Cell Biol. 143, 469– 486 (1998)
    Article CAS PubMed PubMed Central Google Scholar
  9. Paus, R. et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J. Invest. Dermatol. 113, 523– 532 (1999)
    Article CAS PubMed Google Scholar
  10. Millar, S. E. An ideal society? Neighbors of diverse origins interact to create and maintain complex mini-organs in the skin. PLoS Biol. 3, e372 (2005)
    Article PubMed PubMed Central Google Scholar
  11. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533– 545 (2001)
    Article CAS PubMed Google Scholar
  12. Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329– 1337 (1990)
    Article CAS PubMed Google Scholar
  13. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotechnol. 22, 411– 417 (2004)
    Article CAS Google Scholar
  14. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med. 11, 1351– 1354 (2005)
    Article CAS PubMed Google Scholar
  15. Levy, V., Lindon, C., Harfe, B. D. & Morgan, B. A. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev. Cell 9, 855– 861 (2005)
    Article CAS PubMed Google Scholar
  16. Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 121, 963– 968 (2003)
    Article CAS PubMed Google Scholar
  17. Wunderlich, F. T., Wildner, H., Rajewsky, K. & Edenhofer, F. New variants of inducible Cre recombinase: a novel mutant of Cre–PR fusion protein exhibits enhanced sensitivity and an expanded range of inducibility. Nucleic Acids Res. 29, E47 (2001)
    Article CAS PubMed PubMed Central Google Scholar
  18. Claudinot, S., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl Acad. Sci. USA 102, 14677– 14682 (2005)
    Article ADS CAS PubMed PubMed Central Google Scholar
  19. Levy, V., Lindon, C., Zheng, Y., Harfe, B. D. & Morgan, B. A. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. advance online publication, doi:10.1096/fj.06–6926com (25 January 2007)
  20. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451– 461 (2000)
    Article CAS PubMed Google Scholar
  21. Fernandes, K. J. et al. A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biol. 6, 1082– 1093 (2004)
    Article CAS PubMed Google Scholar
  22. Nishimura, E. K. et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854– 860 (2002)
    Article ADS CAS PubMed Google Scholar
  23. Andl, T., Reddy, S. T., Gaddapara, T. & Millar, S. E. WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643– 653 (2002)
    Article CAS PubMed Google Scholar
  24. Van Mater, D., Kolligs, F. T., Dlugosz, A. A. & Fearon, E. R. Transient activation of β-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev. 17, 1219– 1224 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  25. Kishimoto, J., Burgeson, R. E. & Morgan, B. A. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 14, 1181– 1185 (2000)
    CAS PubMed PubMed Central Google Scholar
  26. Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95, 605– 614 (1998)
    Article CAS PubMed Google Scholar
  27. Lo Celso, C., Prowse, D. M. & Watt, F. M. Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131, 1787– 1799 (2004)
    Article CAS PubMed Google Scholar
  28. Fathke, C. et al. Wnt signaling induces epithelial differentiation during cutaneous wound healing. BMC Cell Biol. 7, 4 (2006)
    Article PubMed PubMed Central Google Scholar
  29. Atala, A. Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert Opin. Biol. Ther. 5, 879– 892 (2005)
    Article CAS PubMed Google Scholar
  30. Liu, F. et al. Wnt–β-catenin signaling initiates taste papilla development. Nature Genet. 39, 106– 112 (2006)
    Article PubMed Google Scholar
  31. Handjiski, B. K., Eichmuller, S., Hofmann, U., Czarnetzki, B. M. & Paus, R. Alkaline phosphatase activity and localization during the murine hair cycle. Br. J. Dermatol. 131, 303– 310 (1994)
    Article CAS PubMed Google Scholar
  32. Ito, M., Kizawa, K., Hamada, K. & Cotsarelis, G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation 72, 548– 557 (2004)
    Article PubMed Google Scholar
  33. Chu, E. Y. et al. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 131, 4819– 4829 (2004)
    Article CAS PubMed Google Scholar
  34. Millar, S. E. et al. WNT signaling in the control of hair growth and structure. Dev. Biol. 207, 133– 149 (1999)
    Article CAS PubMed Google Scholar

Download references