Resolvin E1 and protectin D1 activate inflammation-resolution programmes (original) (raw)
References
Serhan, C. N. & Savill, J. Resolution of inflammation: the beginning programs the end. Nature Immunol.6, 1191–1197 (2005) ArticleCAS Google Scholar
Gilroy, D. W., Lawrence, T., Perretti, M. & Rossi, A. G. Inflammatory resolution: new opportunities for drug discovery. Nature Rev. Drug Discov.3, 401–416 (2004) ArticleCAS Google Scholar
Serhan, C. N. et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med.192, 1197–1204 (2000) ArticleCAS Google Scholar
Hong, S., Gronert, K., Devchand, P., Moussignac, R.-L. & Serhan, C. N. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood and glial cells: autacoids in anti-inflammation. J. Biol. Chem.278, 14677–14687 (2003) ArticleCAS Google Scholar
Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nature Immunol.2, 612–619 (2001) ArticleCAS Google Scholar
Maddox, J. F. & Serhan, C. N. Lipoxin A4 and B4 are potent stimuli for human monocyte migration and adhesion: selective inactivation by dehydrogenation and reduction. J. Exp. Med.183, 137–146 (1996) ArticleCAS Google Scholar
Serhan, C. N. Special issue on lipoxins and aspirin-triggered lipoxins. Prostaglandins Leukot. Essent. Fatty Acids73, 139–321 (2005) ArticleCAS Google Scholar
Arita, M. et al. Stereochemical assignment, anti-inflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med.201, 713–722 (2005) ArticleCAS Google Scholar
Serhan, C. N. et al. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J. Immunol.176, 1848–1859 (2006) ArticleCAS Google Scholar
Bazan, N. G. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci.29, 263–271 (2006) ArticleCAS Google Scholar
Bannenberg, G. L. et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol.174, 4345–4355 (2005) ArticleCAS Google Scholar
Cotran, R. S., Kumar, V. & Collins, T. Robbins Pathologic Basis of Disease (W. B. Saunders, Philadelphia, 1999) Google Scholar
Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol.2, 965–975 (2002) ArticleCAS Google Scholar
Sawatzky, D. A., Willoughby, D. A., Colville-Nash, P. R. & Rossi, A. G. The involvement of the apoptosis-modulating proteins ERK 1/2, Bcl-xL and Bax in the resolution of acute inflammation in vivo. Am. J. Pathol.168, 33–41 (2006) ArticleCAS Google Scholar
Rossi, A. G. et al. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nature Med.12, 1056–1064 (2006) ArticleCAS Google Scholar
Reville, K., Crean, J. K., Vivers, S., Dransfield, I. & Godson, C. Lipoxin A4 redistributes myosin IIA and Cdc42 in macrophages: implications for phagocytosis of apoptotic leukocytes. J. Immunol.176, 1878–1888 (2006) ArticleCAS Google Scholar
Freire-de-Lima, C. G. et al. Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J. Biol. Chem.281, 38376–38384 (2006) ArticleCAS Google Scholar
Maderna, P., Yona, S., Perretti, M. & Godson, C. Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac(2–26). J. Immunol.174, 3727–3733 (2005) ArticleCAS Google Scholar
Liu, Y. et al. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol.162, 3639–3646 (1999) CASPubMed Google Scholar
Vandivier, R. W., Henson, P. M. & Douglas, I. S. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest129, 1673–1682 (2006) Article Google Scholar
Underhill, D. M. Macrophage recognition of zymosan particles. J. Endotoxin Res.9, 176–180 (2003) ArticleCAS Google Scholar
Gilroy, D. W. et al. Inducible cycloxygenase may have anti-inflammatory properties. Nature Med.5, 698–701 (1999) ArticleCAS Google Scholar
Gronert, K. et al. A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense. J. Biol. Chem.280, 15267–15278 (2005) ArticleCAS Google Scholar
Sadik, C. D., Sies, H. & Schewe, T. Inhibition of 15-lipoxygenases by flavonoids: structure-activity relations and mode of action. Biochem. Pharmacol.65, 773–781 (2003) ArticleCAS Google Scholar
Bellingan, G. J. et al. Adhesion molecule-dependent mechanisms regulate the rate of macrophage clearance during the resolution of peritoneal inflammation. J. Exp. Med.196, 1515–1521 (2002) ArticleCAS Google Scholar
Cao, C., Lawrence, D. A., Strickland, D. K. & Zhang, L. A specific role of integrin Mac-1 in accelerated macrophage efflux to the lymphatics. Blood106, 3234–3241 (2005) ArticleCAS Google Scholar
Pond, C. M. Adipose tissue and the immune system. Prostaglandins Leukot. Essent. Fatty Acids73, 17–30 (2005) ArticleCAS Google Scholar
Wellen, K. E. & Hotamisligil, G. S. Inflammation, stress, and diabetes. J. Clin. Invest.115, 1111–1119 (2005) ArticleCAS Google Scholar