Points of control in inflammation (original) (raw)
Zweifach, B. W., Grant, L. & McCluskey, R. T. The Inflammatory Process (Academic, New York, 1965). Google Scholar
Bunting, M., Harris, E. S., McIntyre, T. M., Prescott, S. M. & Zimmerman, G. A. Leukocyte adhesion deficiency syndromes: adhesion and tethering defects involving β2 integrins and selectin ligands. Curr. Opin. Hematol.9, 30–35 (2002). PubMed Google Scholar
Soiffer, R. et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA95, 13141–13146 (1998). ADSCASPubMedPubMed Central Google Scholar
Morales, A. Intravesical therapy of bladder cancer: an immunotherapy success story. Int. J. Urol.3, 329–333 (1996). CASPubMed Google Scholar
Riewald, M., Petrovan, R. J., Donner, A., Mueller, B. M. & Ruf, W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science296, 1880–1882 (2002). ADSCASPubMed Google Scholar
Steinhoff, M. et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nature Med.6, 151–158 (2000). CASPubMed Google Scholar
Basu, S. & Srivastava, P. K. Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell Stress Chaper.5, 443–451 (2000). CAS Google Scholar
Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature418, 191–195 (2002). ADSCASPubMed Google Scholar
Carp, H. Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils. J. Exp. Med.155, 264–275 (1982). CASPubMed Google Scholar
Muller, W. A. Leukocyte-endothelial cell interactions in the inflammatory response. Lab. Invest.82, 521–533 (2002). CASPubMed Google Scholar
Lee, D. M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science297, 1689–1692 (2002). ADSCASPubMed Google Scholar
van der Poll, T. Coagulation and inflammation. J. Endotoxin Res.7, 301–304 (2001). CASPubMed Google Scholar
Kaplan, A. P., Joseph, K. & Silverberg, M. Pathways for bradykinin formation and inflammatory disease. J. Allergy Clin. Immunol.109, 195–209 (2002). CASPubMed Google Scholar
Nathan, C., Xie, Q. W., Halbwachs-Mecarelli, L. & Jin, W. W. Albumin inhibits neutrophil spreading and hydrogen peroxide release by blocking the shedding of CD43 (sialophorin, leukosialin). J. Cell Biol.122, 243–256 (1993). CASPubMed Google Scholar
Nathan, C. F. Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J. Clin. Invest.80, 1550–1560 (1987). CASPubMedPubMed Central Google Scholar
Weiss, S. J. Tissue destruction by neutrophils. N. Engl. J. Med.320, 365–376 (1989). CASPubMed Google Scholar
Morgan, J. G., Pereira, H. A., Sukiennicki, T., Spitznagel, J. K. & Larrick, J. W. Human neutrophil granule cationic protein CAP37 is a specific macrophage chemotaxin that shares homology with inflammatory proteinases. Adv. Exp. Med. Biol.305, 89–96 (1991). CASPubMed Google Scholar
Yang, D. et al. β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science286, 525–528 (1999). CASPubMed Google Scholar
Robbiani, D. F. et al. The leukotriene C4 transporter MRP1 regulates CCL19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell103, 757–768 (2000). CASPubMed Google Scholar
Matzinger, P. The danger model: a renewed sense of self. Science296, 301–305 (2002). ADSCASPubMed Google Scholar
Medzhitov, R. & Janeway, C. A. Jr Decoding the patterns of self and nonself by the innate immune system. Science296, 298–300 (2002). ADSCASPubMed Google Scholar
Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med.347, 185–192 (2002). CASPubMed Google Scholar
Fink, M. P. Effect of critical illness on microbial translocation and gastrointestinal mucosa permeability. Semin. Respir. Infect.9, 256–260 (1994). CASPubMed Google Scholar
Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nature Immunol.2, 612–619 (2001). CAS Google Scholar
Mizumoto, N. et al. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nature Med.8, 358–365 (2002). CASPubMed Google Scholar
Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature414, 916–920 (2001). ADSCASPubMed Google Scholar
Hoek, R. M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science290, 1768–1771 (2000). ADSCASPubMed Google Scholar
Daheshia, M., Friend, D. S., Grusby, M. J., Austen, K. F. & Katz, H. R. Increased severity of local and systemic anaphylactic reactions in gp49B1-deficient mice. J. Exp. Med.194, 227–234 (2001). CASPubMedPubMed Central Google Scholar
Teder, P. et al. Resolution of lung inflammation by CD44. Science296, 155–158 (2002). ADSCASPubMed Google Scholar
Ashcroft, G. S. et al. Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. Nature Med.6, 1147–1153 (2000). CASPubMed Google Scholar
Marino, M. W. et al. Characterization of tumor necrosis factor-deficient mice. Proc. Natl Acad. Sci. USA94, 8093–8098 (1997). ADSCASPubMedPubMed Central Google Scholar
Hodge-Dufour, J. et al. Inhibition of interferon γ induced interleukin 12 production: a potential mechanism for the anti-inflammatory activities of tumor necrosis factor. Proc. Natl Acad. Sci. USA95, 13806–13811 (1998). ADSCASPubMedPubMed Central Google Scholar
Jin, F. Y., Nathan, C., Radzioch, D. & Ding, A. Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell88, 417–426 (1997). CASPubMed Google Scholar
Grobmyer, S. R. et al. Secretory leukocyte protease inhibitor, an inhibitor of neutrophil activation, is elevated in serum in human sepsis and experimental endotoxemia. Crit. Care Med.28, 1276–1282 (2000). CASPubMed Google Scholar
Zhu, J. et al. Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell (in the press).
Segal, B. H., Leto, T. L., Gallin, J. I., Malech, H. L. & Holland, S. M. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore)79, 170–200 (2000). CAS Google Scholar
Morgenstern, D. E., Gifford, M. A., Li, L. L., Doerschuk, C. M. & Dinauer, M. C. Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J. Exp. Med.185, 207–218 (1997). CASPubMedPubMed Central Google Scholar
Clark, R. A. & Klebanoff, S. J. Chemotactic factor inactivation by the myeloperoxidase-hydrogen peroxide-halide system. J. Clin. Invest.64, 913–920 (1979). CASPubMedPubMed Central Google Scholar
Bogdan, C. Nitric oxide and the immune response. Nature Immunol.2, 907–916 (2001). CAS Google Scholar
Schur, P. H. Genetics of complement deficiencies associated with lupus-like syndromes. Arthritis Rheum.21, S153–S160 (1978). CASPubMed Google Scholar
Walport, M. J., Davies, K. A., Morley, B. J. & Botto, M. Complement deficiency and autoimmunity. Ann. NY Acad. Sci.815, 267–281 (1997). ADSCASPubMed Google Scholar
Wert, S. E. et al. Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc. Natl Acad. Sci. USA97, 5972–5977 (2000). ADSCASPubMedPubMed Central Google Scholar
Ogura, Y. et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem.276, 4812–4818 (2001). CASPubMed Google Scholar
Kastner, D. L. & O'Shea, J. J. A fever gene comes in from the cold. Nature Genet.29, 241–242 (2001). CASPubMed Google Scholar
Levy, B. D. et al. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A4 . Nature Med.8, 1018–1023 (2002). CASPubMed Google Scholar
Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med.345, 1098–1104 (2001). CASPubMed Google Scholar
Vaishnaw, A. K. et al. The spectrum of apoptotic defects and clinical manifestations, including systemic lupus erythematosus, in humans with CD95 (Fas/APO-1) mutations. Arthritis Rheum.42, 1833–1842 (1999). CASPubMed Google Scholar
Fisher, G. H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell81, 935–946 (1995). CASPubMed Google Scholar
Sneller, M. C. et al. A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease. J. Clin. Invest.90, 334–341 (1992). CASPubMedPubMed Central Google Scholar
Cohen, P. L. & Eisenberg, R. A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol.9, 243–269 (1991). CASPubMed Google Scholar
Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genet.19, 56–59 (1998). CASPubMed Google Scholar
Lipsker, D. M. et al. Lupus erythematosus associated with genetically determined deficiency of the second component of the complement. Arch. Dermatol.136, 1508–1514 (2000). CASPubMed Google Scholar
Chen, Z., Koralov, S. B. & Kelsoe, G. Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2. J. Exp. Med.192, 1339–1352 (2000). CASPubMedPubMed Central Google Scholar
Sullivan, K. E. Complement deficiency and autoimmunity. Curr. Opin. Pediatr.10, 600–606 (1998). CASPubMed Google Scholar
Xu, C. et al. A critical role for murine complement regulator Crry in fetomaternal tolerance. Science287, 498–501 (2000). ADSCASPubMed Google Scholar
Bickerstaff, M. C. et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nature Med.5, 694–697 (1999). CASPubMed Google Scholar
Napirei, M. et al. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nature Genet.25, 177–181 (2000). CASPubMed Google Scholar
Bolland, S., Yim, Y. S., Tus, K., Wakeland, E. K. & Ravetch, J. V. Genetic modifiers of systemic lupus erythematosus in FcγRIIB−/− mice. J. Exp. Med.195, 1167–1174 (2002). CASPubMedPubMed Central Google Scholar
Sullivan, K. E., Mullen, C. A., Blaese, R. M. & Winkelstein, J. A. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J. Pediatr.125, 876–885 (1994). CASPubMed Google Scholar
Leverrier, Y. et al. Cutting edge: the Wiskott-Aldrich syndrome protein is required for efficient phagocytosis of apoptotic cells. J. Immunol.166, 4831–4834 (2001). CASPubMed Google Scholar
Snapper, S. B. et al. Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity9, 81–91 (1998). CASPubMed Google Scholar
McDermott, M. F. et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell97, 133–144 (1999). CASPubMed Google Scholar
Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature359, 693–699 (1992). ADSCASPubMedPubMed Central Google Scholar
Kulkarni, A. B. et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl Acad. Sci. USA90, 770–774 (1993). ADSCASPubMedPubMed Central Google Scholar
Willerford, D. M. et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity3, 521–530 (1995). CASPubMed Google Scholar
Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell75, 253–261 (1993). CASPubMed Google Scholar
Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell75, 263–274 (1993). CASPubMed Google Scholar
Dranoff, G. et al. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science264, 713–716 (1994). ADSCASPubMed Google Scholar
Nicklin, M. J., Hughes, D. E., Barton, J. L., Ure, J. M. & Duff, G. W. Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene. J. Exp. Med.191, 303–312 (2000). CASPubMedPubMed Central Google Scholar
Horai, R. et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J. Exp. Med.191, 313–320 (2000). CASPubMedPubMed Central Google Scholar
Mombaerts, P. et al. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell75, 274–282 (1993). CASPubMed Google Scholar
Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science270, 985–988 (1995). ADSCASPubMed Google Scholar
Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity3, 541–547 (1995). CASPubMed Google Scholar
Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity11, 141–151 (1999). CASPubMed Google Scholar
Sommers, C. L. et al. A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science296, 2040–2043 (2002). ADSCASPubMed Google Scholar
Alexander, W. S. et al. SOCS1 is a critical inhibitor of interferon γ signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell98, 597–608 (1999). CASPubMed Google Scholar
Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science297, 1031–1034 (2002). ADSCASPubMed Google Scholar
Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/− mice. Science285, 2122–2125 (1999). CASPubMed Google Scholar
Hibbs, M. L. et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell83, 301–311 (1995). CASPubMed Google Scholar
Nishizumi, H. et al. Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice. Immunity3, 549–560 (1995). CASPubMed Google Scholar
Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature403, 211–216 (2000). ADSCASPubMed Google Scholar
Rudolph, U. et al. Ulcerative colitis and adenocarcinoma of the colon in Gαi2-deficient mice. Nature Genet.10, 143–150 (1995). CASPubMed Google Scholar
Tsui, H. W., Siminovitch, K. A., de Souza, L. & Tsui, F. W. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nature Genet.4, 124–129 (1993). CASPubMed Google Scholar
Shultz, L. D. et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell73, 1445–1454 (1993). CASPubMed Google Scholar
Helgason, C. D. et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev.12, 1610–1620 (1998). MathSciNetCASPubMedPubMed Central Google Scholar
Balomenos, D. et al. The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nature Med.6, 171–176 (2000). CASPubMed Google Scholar
Taylor, G. A. et al. A pathogenetic role for TNFα in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity4, 445–454 (1996). CASPubMed Google Scholar
Ranger, A. M., Oukka, M., Rengarajan, J. & Glimcher, L. H. Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity9, 627–635 (1998). CASPubMed Google Scholar
Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature417, 861–866 (2002). ADSCASPubMed Google Scholar
The International Incontinentia Pigmenti (IP) Consortium. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. Nature405, 466–472 (2000).
Schmidt-Supprian, M. et al. NEMO/IKKγ-deficient mice model incontinentia pigmenti. Mol. Cell5, 981–992 (2000). CASPubMed Google Scholar
Makris, C. et al. Female mice heterozygous for IKKγ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell5, 969–979 (2000). CASPubMed Google Scholar
Klement, J. F. et al. IκBα deficiency results in a sustained NF-κB response and severe widespread dermatitis in mice. Mol. Cell. Biol.16, 2341–2349 (1996). CASPubMedPubMed Central Google Scholar
Perry, W. L. et al. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nature Genet.18, 143–146 (1998). CASPubMed Google Scholar
Weih, F. et al. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-κB/Rel family. Cell80, 331–340 (1995). CASPubMed Google Scholar
Burkly, L. et al. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature373, 531–536 (1995). ADSCASPubMed Google Scholar
Barton, D., HogenEsch, H. & Weih, F. Mice lacking the transcription factor RelB develop T cell-dependent skin lesions similar to human atopic dermatitis. Eur. J. Immunol.30, 2323–2332 (2000). CASPubMed Google Scholar
Ishikawa, H. et al. Chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p)105 precursor (NF-κB1) but expressing p50. J. Exp. Med.187, 985–996 (1998). CASPubMedPubMed Central Google Scholar
Finotto, S. et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science295, 336–338 (2002). ADSCASPubMed Google Scholar
Salvador, J. M. et al. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity16, 499–508 (2002). CASPubMed Google Scholar
Panwala, C. M., Jones, J. C. & Viney, J. L. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J. Immunol.161, 5733–5744 (1998). CASPubMed Google Scholar
Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411, 599–603 (2001). ADSCASPubMed Google Scholar
Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature411, 603–606 (2001). ADSCASPubMed Google Scholar
Miceli-Richard, C. et al. CARD15 mutations in Blau syndrome. Nature Genet.29, 19–20 (2001). CASPubMed Google Scholar
International Mediterranean Fever Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell90, 797–807 (1997). Google Scholar
French FMF Consortium. A candidate gene for familial Mediterranean fever. Nature Genet.17, 25–31 (1997).
Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nature Genet.29, 301–305 (2001). CASPubMed Google Scholar
Houten, S. M. et al. Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nature Genet.22, 175–177 (1999). ADSCASPubMed Google Scholar
Drenth, J. P. et al. Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. International Hyper-IgD Study Group. Nature Genet.22, 178–181 (1999). CASPubMed Google Scholar
Poss, K. D. & Tonegawa, S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl Acad. Sci. USA94, 10919–10924 (1997). ADSCASPubMedPubMed Central Google Scholar