Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation (original) (raw)
References
Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell21, 533–542 (2006) ArticleCAS Google Scholar
Nottrott, S., Simard, M. J. & Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature Struct. Mol. Biol.13, 1108–1114 (2006) ArticleCAS Google Scholar
Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nature Struct. Mol. Biol.13, 1102–1107 (2006) ArticleCAS Google Scholar
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999) ArticleCAS Google Scholar
Seggerson, K., Tang, L. & Moss, E. G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol.243, 215–225 (2002) ArticleCAS Google Scholar
Pillai, R. S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science309, 1573–1576 (2005) ArticleADSCAS Google Scholar
Humphreys, D. T., Westman, B. J., Martin, D. I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl Acad. Sci. USA102, 16961–16966 (2005) ArticleADSCAS Google Scholar
Wu, L., Fan, J. & Belasco, J. G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl Acad. Sci. USA103, 4034–4039 (2006) ArticleADSCAS Google Scholar
Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell122, 553–563 (2005) ArticleCAS Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004) ArticleCAS Google Scholar
Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005) ArticleCAS Google Scholar
Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature434, 338–345 (2005) ArticleADSCAS Google Scholar
Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433, 769–773 (2005) ArticleADSCAS Google Scholar
Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science304, 594–596 (2004) ArticleADSCAS Google Scholar
Sen, G. L. & Blau, H. M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nature Cell Biol.7, 633–636 (2005) ArticleCAS Google Scholar
Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biol.7, 719–723 (2005) ArticleCAS Google Scholar
Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila MicroRNA targets. PLoS Biol.1, 397–409 (2003)
Leaman, D. et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell121, 1097–1108 (2005) ArticleCAS Google Scholar
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science294, 853–858 (2001) ArticleADSCAS Google Scholar
Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. & Sharp, P. A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev.13, 3191–3197 (1999) ArticleCAS Google Scholar
Lecellier, C. H. et al. A cellular microRNA mediates antiviral defense in human cells. Science308, 557–560 (2005) ArticleADSCAS Google Scholar
Gray, N. K. & Hentze, M. W. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J.13, 3882–3891 (1994) ArticleCAS Google Scholar
Gebauer, F., Grskovic, M. & Hentze, M. W. Drosophila sex-lethal inhibits the stable association of the 40S ribosomal subunit with msl-2 mRNA. Mol. Cell11, 1397–1404 (2003) ArticleCAS Google Scholar
Hershey, J. W. & Monro, R. E. A competitive inhibitor of the GTP reaction in protein synthesis. J. Mol. Biol.18, 68–76 (1966) ArticleCAS Google Scholar
Anthony, D. D. & Merrick, W. C. Analysis of 40 S and 80 S complexes with mRNA as measured by sucrose density gradients and primer extension inhibition. J. Biol. Chem.267, 1554–1562 (1992) CASPubMed Google Scholar
Beckmann, K., Grskovic, M., Gebauer, F. & Hentze, M. W. A dual inhibitory mechanism restricts msl-2 mRNA translation for dosage compensation in Drosophila. Cell122, 529–540 (2005) ArticleCAS Google Scholar
Chekulaeva, M., Hentze, M. W. & Ephrussi, A. Bruno acts as a dual repressor of oskar translation, promoting mRNA oligomerization and formation of silencing particles. Cell124, 521–533 (2006) ArticleCAS Google Scholar
Thoma, C. et al. Enhancement of IRES-mediated translation of the c-myc and BiP mRNAs by the poly(A) tail is independent of intact eIF4G and PABP. Mol. Cell15, 925–935 (2004) ArticleCAS Google Scholar
Preiss, T., Muckenthaler, M. & Hentze, M. W. Poly(A)-tail-promoted translation in yeast: implications for translational control. RNA4, 1321–1331 (1998) ArticleCAS Google Scholar
Ostareck, D. H. et al. Lipoxygenase mRNA silencing in erythroid differentiation: The 3′UTR regulatory complex controls 60S ribosomal subunit joining. Cell104, 281–290 (2001) ArticleCAS Google Scholar
Valoczi, A. et al. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res.32, e175 (2004) Article Google Scholar