Nuclear organization of the genome and the potential for gene regulation (original) (raw)

References

  1. Wurtele, H. & Chartrand, P. Genome-wide scanning of _HoxB1_-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res. 14, 477–495 (2006).
    Article Google Scholar
  2. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nature Genet. 38, 1341–1347 (2006).
    Article CAS Google Scholar
  3. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genet. 38, 1348–1354 (2006).
    Article CAS Google Scholar
  4. Cremer, T. et al. Chromosome territories — a functional nuclear landscape. Curr. Opin. Cell Biol. 18, 307–316 (2006).
    Article CAS Google Scholar
  5. Bolzer, A. et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. [online] 3, e157 (2005) (10.1371/journal.pbio.0030157).
    Article CAS PubMed PubMed Central Google Scholar
  6. Parada, L. & Misteli, T. Chromosome positioning in the interphase nucleus. Trends Cell Biol. 12, 425–432 (2002).
    Article CAS Google Scholar
  7. Bickmore, W. A. & Teague, P. Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res. 10, 707–715 (2002).
    Article CAS Google Scholar
  8. Parada, L. A., McQueen, P. G. & Misteli, T. Tissue-specific spatial organization of genomes. Genome Biol. [online] 5, R44 (2004) (doi: 0.1186/gb-2004-5-7-r44).
    Article Google Scholar
  9. Xu, N., Tsai, C. L. & Lee, J. T. Transient homologous chromosome pairing marks the onset of X inactivation. Science 311, 1149–1152 (2006).
    Article ADS CAS Google Scholar
  10. Bacher, C. P. et al. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nature Cell Biol. 8, 293–299 (2006).
    Article CAS Google Scholar
  11. Kurz, A. et al. Active and inactive genes localize preferentially in the periphery of chromosome territories. J. Cell Biol. 135, 1195–1205 (1996).
    Article CAS Google Scholar
  12. Mahy, N. L., Perry, P. E., Gilchrist, S., Baldock, R. A. & Bickmore, W. A. Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J. Cell Biol. 157, 579–589 (2002).
    Article CAS Google Scholar
  13. Mahy, N. L., Perry, P. E. & Bickmore, W. A. Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J. Cell Biol. 159, 753–763 (2002).
    Article CAS Google Scholar
  14. Brown, J. M. et al. Coregulated human globin genes are frequently in spatial proximity when active. J. Cell Biol. 172, 177–187 (2006).
    Article CAS Google Scholar
  15. Volpi, E. V. et al. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J. Cell Sci. 113, 1565–1576 (2000).
    CAS PubMed Google Scholar
  16. Williams, R. R., Broad, S., Sheer, D. & Ragoussis, J. Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp. Cell Res. 272, 163–175 (2002).
    Article CAS Google Scholar
  17. Chambeyron, S. & Bickmore, W. A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130 (2004).
    Article CAS Google Scholar
  18. Morey, C., Da Silva, N. R., Perry, P. & Bickmore, W. A. Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 134, 909–919 (2007).
    Article CAS Google Scholar
  19. Branco, M. R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. [online] 4, e138 (2006) (doi: 10.1371/journal.pbio.0040138).
    Article CAS PubMed PubMed Central Google Scholar
  20. Chuang, C. H. et al. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16, 825–831 (2006).
    Article CAS Google Scholar
  21. Chubb, J. R., Boyle, S., Perry, P. & Bickmore, W. A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439–445 (2002).
    Article CAS Google Scholar
  22. Chaumeil, J., Le Baccon, P., Wutz, A. & Heard, E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 20, 2223–2237 (2006).
    Article CAS Google Scholar
  23. Abranches, R., Beven, A. F., Aragon-Alcaide, L. & Shaw, P. J. Transcription sites are not correlated with chromosome territories in wheat nuclei. J. Cell Biol. 143, 5–12 (1998).
    Article CAS Google Scholar
  24. Sadoni, N. & Zink, D. Nascent RNA synthesis in the context of chromatin architecture. Chromosome Res. 12, 439–451 (2004).
    Article CAS Google Scholar
  25. Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nature Genet. 36, 1065–1071 (2004).
    Article CAS Google Scholar
  26. Ragoczy, T., Bender, M. A., Telling, A., Byron, R. & Groudine, M. The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev. 20, 1447–1457 (2006).
    Article CAS Google Scholar
  27. Chubb, J. R., Trcek, T., Shenoy, S. M. & Singer, R. H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).
    Article CAS Google Scholar
  28. Iborra, F. J., Pombo, A., Jackson, D. A. & Cook, P. R. Active RNA polymerases are localized within discrete transcription 'factories' in human nuclei. J. Cell Sci. 109, 1427–1436 (1996).
    CAS PubMed Google Scholar
  29. Moen, P. T. Jr et al. Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol. Biol. Cell 15, 197–206 (2004).
    Article CAS Google Scholar
  30. Shopland, L. S., Johnson, C. V., Byron, M., McNeil, J. & Lawrence, J. B. Clustering of multiple specific genes and gene-rich R-bands around SC-35 domains: evidence for local euchromatic neighborhoods. J. Cell Biol. 162, 981–990 (2003).
    Article CAS Google Scholar
  31. Xie, S. Q., Martin, S., Guillot, P. V., Bentley, D. L. & Pombo, A. Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on serine2 residues of the C-terminal domain. Mol. Biol. Cell 17, 1723–1733 (2006).
    Article CAS Google Scholar
  32. Johnson, C. et al. Tracking COL1A1 RNA in osteogenesis imperfecta. Splice-defective transcripts initiate transport from the gene but are retained within the SC35 domain. J. Cell Biol. 150, 417–432 (2000).
    Article CAS Google Scholar
  33. Molenaar, C., Abdulle, A., Gena, A., Tanke, H. J. & Dirks, R. W. Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells. J. Cell Biol. 165, 191–202 (2004).
    Article CAS Google Scholar
  34. Shopland, L. S. et al. Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence. J. Cell Biol. 174, 27–38 (2006).
    Article CAS Google Scholar
  35. Serizawa, S. et al. Negative feedback regulation ensures the one receptor–one olfactory neuron rule in mouse. Science 302, 2088–2094 (2003).
    Article ADS CAS Google Scholar
  36. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).
    Article CAS Google Scholar
  37. Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).
    Article ADS CAS Google Scholar
  38. Morey, C. & Bickmore, W. Sealed with a X. Nature Cell Biol. 8, 207–209 (2006).
    Article CAS Google Scholar
  39. LaSalle, J. M. & Lalande, M. Homologous association of oppositely imprinted chromosomal domains. Science 272, 725–728 (1996).
    Article ADS CAS Google Scholar
  40. Ling, J. Q. et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312, 269–272 (2006).
    Article ADS CAS Google Scholar
  41. Sproul, D., Gilbert, N. & Bickmore, W. A. The role of chromatin structure in regulating the expression of clustered genes. Nature Rev. Genet. 6, 775–781 (2005).
    Article CAS Google Scholar
  42. Chakalova, L., Debrand, E., Mitchell, J. A., Osborne, C. S. & Fraser, P. Replication and transcription: shaping the landscape of the genome. Nature Rev. Genet. 6, 669–677 (2005).
    Article CAS Google Scholar
  43. Eggan, K. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004).
    Article ADS CAS Google Scholar
  44. Li, J., Ishii, T., Feinstein, P. & Mombaerts, P. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428, 393–399 (2004).
    Article ADS CAS Google Scholar

Download references