Gregory, T. R. The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann. Bot. (Lond.)95, 133–146 (2005). ArticleCAS Google Scholar
Hall, I. M. & Grewal, S. I. in RNAi: A Guide to Gene Silencing (ed. Hannon, G. J.) 205–232 (Cold Spring Harbor Laboratory Press, Woodbury, 2003). Google Scholar
Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell128, 669–681 (2007). ArticleCAS Google Scholar
Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science294, 2539–2542 (2001). ArticleADSCAS Google Scholar
Bejerano, G. et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature441, 87–90 (2006). ArticleADSCAS Google Scholar
Liu, J., He, Y., Amasino, R. & Chen, X. siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev.18, 2873–2878 (2004). ArticleCAS Google Scholar
Comfort, N. C. From controlling elements to transposons: Barbara McClintock and the Nobel Prize. Trends Biochem. Sci.26, 454–457 (2001). ArticleCAS Google Scholar
Chandler, V. L. & Stam, M. Chromatin conversations: mechanisms and implications of paramutation. Nature Rev. Genet.5, 532–544 (2004). ArticleCAS Google Scholar
Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science286, 950–952 (1999). ArticleCAS Google Scholar
Wassenegger, M., Heimes, S., Riedel, L. & Sanger, H. L. RNA-directed de novo methylation of genomic sequences in plants. Cell76, 567–576 (1994). ArticleCAS Google Scholar
Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell126, 1189–1201 (2006). ArticleCAS Google Scholar
Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet.39, 61–69 (2007). ArticleCAS Google Scholar
nalysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature408, 796–815 (2000).
Fransz, P. F. et al. High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J.9, 421–430 (1996). ArticleCAS Google Scholar
Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature430, 471–476 (2004). ArticleADSCAS Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). ArticleADSCAS Google Scholar
Aufsatz, W., Mette, M. F., van der Winden, J., Matzke, A. J. & Matzke, M. RNA-directed DNA methylation in Arabidopsis. Proc. Natl Acad. Sci. USA99 (suppl. 4), 16499–16506 (2002). ArticleADSCAS Google Scholar
Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. Analysis of a _piwi_-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell110, 689–699 (2002). ArticleCAS Google Scholar
Matzke, M., Matzke, A. J. & Kooter, J. M. RNA: guiding gene silencing. Science293, 1080–1083 (2001). ArticleCAS Google Scholar
Lu, C. et al. Elucidation of the small RNA component of the transcriptome. Science309, 1567–1569 (2005). ArticleADSCAS Google Scholar
Cao, X. et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol.13, 2212–2217 (2003). ArticleCAS Google Scholar
Cao, X. & Jacobsen, S. E. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol.12, 1138–1144 (2002). ArticleCAS Google Scholar
Chan, S. W. et al. RNA silencing genes control de novo DNA methylation. Science303, 1336 (2004). ArticleCAS Google Scholar
Zilberman, D. et al. Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr. Biol.14, 1214–1220 (2004). ArticleCAS Google Scholar
Henderson, I. R. et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nature Genet.38, 721–725 (2006). ArticleCAS Google Scholar
Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol.2, e104 (2004). Article Google Scholar
Chan, S. W. et al. RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in Arabidopsis. PLoS Genet.2, e83 (2006). Article Google Scholar
Li, C. F. et al. An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell126, 93–106 (2006). ArticleCAS Google Scholar
Pontes, O. et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell126, 79–92 (2006). ArticleCAS Google Scholar
Qi, Y. et al. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature443, 1008–1012 (2006). ArticleADS Google Scholar
Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science299, 716–719 (2003). ArticleADSCAS Google Scholar
Herr, A. J., Jensen, M. B., Dalmay, T. & Baulcombe, D. C. RNA polymerase IV directs silencing of endogenous DNA. Science308, 118–120 (2005). ArticleADSCAS Google Scholar
Kanno, T. et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nature Genet.37, 761–765 (2005). ArticleCAS Google Scholar
Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell120, 613–622 (2005). ArticleCAS Google Scholar
Pontier, D. et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev.19, 2030–2040 (2005). ArticleCAS Google Scholar
Kanno, T. et al. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr. Biol.14, 801–805 (2004). ArticleCAS Google Scholar
Cao, X. & Jacobsen, S. E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc. Natl Acad. Sci. USA99 (suppl. 4), 16491–16498 (2002). ArticleADSCAS Google Scholar
Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem.74, 481–514 (2005). ArticleCAS Google Scholar
Saze, H., Mittelsten Scheid, O. & Paszkowski, J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nature Genet.34, 65–69 (2003). ArticleCAS Google Scholar
Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature416, 556–560 (2002). ArticleADSCAS Google Scholar
Malagnac, F., Bartee, L. & Bender, J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J.21, 6842–6852 (2002). ArticleCAS Google Scholar
Jacobsen, S. E. & Meyerowitz, E. M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science277, 1100–1103 (1997). ArticleCAS Google Scholar
Herman, H. et al. Trans allele methylation and paramutation-like effects in mice. Nature Genet.34, 199–202 (2003). ArticleCAS Google Scholar
Stam, M. et al. The regulatory regions required for _B_′ paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics162, 917–930 (2002). CASPubMedPubMed Central Google Scholar
Stam, M., Belele, C., Dorweiler, J. E. & Chandler, V. L. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev.16, 1906–1918 (2002). ArticleCAS Google Scholar
Alleman, M. et al. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature442, 295–298 (2006). ArticleADSCAS Google Scholar
Woodhouse, M. R., Freeling, M. & Lisch, D. Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol.4, e339 (2006). Article Google Scholar
Chan, S. W.-L., Zhang, X., Bernatavichute, Y. V. & Jacobsen, S. E. Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol.4, e363 (2006). Article Google Scholar
Lisch, D., Carey, C. C., Dorweiler, J. E. & Chandler, V. L. A mutation that prevents paramutation in maize also reverses Mutator transposon methylation and silencing. Proc. Natl Acad. Sci. USA99, 6130–6135 (2002). ArticleADSCAS Google Scholar
Soppe, W. J. et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell6, 791–802 (2000). ArticleCAS Google Scholar
Gehring, M., Choi, Y. & Fischer, R. L. Imprinting and seed development. Plant Cell16, S203–S213 (2004). ArticleCAS Google Scholar
Kinoshita, T. et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science303, 521–523 (2004). ArticleADSCAS Google Scholar
Choi, Y. et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell110, 33–42 (2002). ArticleCAS Google Scholar
Gehring, M. et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell124, 495–506 (2006). ArticleCAS Google Scholar
Morales-Ruiz, T. et al. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc. Natl Acad. Sci.USA103, 6853–6858 (2006). ArticleADSCAS Google Scholar
Jullien, P. E., Kinoshita, T., Ohad, N. & Berger, F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell18, 1360–1372 (2006). ArticleCAS Google Scholar
Kinoshita, Y. et al. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J.49, 38–45 (2007). ArticleCAS Google Scholar
Gong, Z. et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell111, 803–814 (2002). ArticleCAS Google Scholar
Agius, F., Kapoor, A. & Zhu, J. K. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc. Natl Acad. Sci. USA103, 11796–11801 (2006). ArticleADSCAS Google Scholar
Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature445, 671–675 (2007). ArticleCAS Google Scholar
Jost, J. P., Siegmann, M., Sun, L. & Leung, R. Mechanisms of DNA demethylation in chicken embryos. Purification and properties of a 5-methylcytosine-DNA glycosylase. J. Biol. Chem.270, 9734–9739 (1995). ArticleCAS Google Scholar
Danilevskaya, O. N. et al. Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. Plant Cell15, 425–438 (2003). ArticleCAS Google Scholar
Gutierrez-Marcos, J. F. et al. Epigenetic asymmetry of imprinted genes in plant gametes. Nature Genet.38, 876–878 (2006). ArticleCAS Google Scholar
Shiba, H. et al. Dominance relationships between self-incompatibility alleles controlled by DNA methylation. Nature Genet.38, 297–299 (2006). ArticleCAS Google Scholar
Kohler, C. & Grossniklaus, U. Epigenetic inheritance of expression states in plant development: the role of Polycomb group proteins. Curr. Opin. Cell Biol.14, 773–779 (2002). ArticleCAS Google Scholar
Kinoshita, T., Yadegari, R., Harada, J. J., Goldberg, R. B. & Fischer, R. L. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell11, 1945–1952 (1999). ArticleCAS Google Scholar
Baroux, C., Gagliardini, V., Page, D. R. & Grossniklaus, U. Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Genes Dev.20, 1081–1086 (2006). ArticleCAS Google Scholar
Jullien, P. E., Katz, A., Oliva, M., Ohad, N. & Berger, F. Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Curr. Biol.16, 486–492 (2006). ArticleCAS Google Scholar
Mager, J., Montgomery, N. D., de Villena, F. P. & Magnuson, T. Genome imprinting regulated by the mouse Polycomb group protein Eed. Nature Genet.33, 502–507 (2003). ArticleCAS Google Scholar
Bastow, R. et al. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature427, 164–167 (2004). ArticleADSCAS Google Scholar
Gendall, A. R., Levy, Y. Y., Wilson, A. & Dean, C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell107, 525–535 (2001). ArticleCAS Google Scholar
Sung, S. & Amasino, R. M. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature427, 159–164 (2004). ArticleADSCAS Google Scholar
Sung, S., Schmitz, R. J. & Amasino, R. M. A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes Dev.20, 3244–3248 (2006). ArticleCAS Google Scholar
Mylne, J. S. et al. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proc. Natl Acad. Sci. USA103, 5012–5017 (2006). ArticleADSCAS Google Scholar
Sung, S. et al. Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nature Genet.38, 706–710 (2006). ArticleCAS Google Scholar
Levy, Y. Y., Mesnage, S., Mylne, J. S., Gendall, A. R. & Dean, C. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science297, 243–246 (2002). ArticleADSCAS Google Scholar