Stability and flexibility of epigenetic gene regulation in mammalian development (original) (raw)
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCAS Google Scholar
Morgan, H. D., Santos, F., Green, K., Dean, W. & Reik, W. Epigenetic reprogramming in mammals. Hum. Mol. Genet.14, R47–R58 (2005). ArticleCAS Google Scholar
Allis, C. D., Jenuwein, T. & Reinberg, D. (eds) Epigenetics (Cold Spring Harbor Laboratory Press, Woodbury, 2007).
Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev.16, 6–21 (2002). ArticleCAS Google Scholar
Li, E. Chromatin modification and epigenetic reprogramming in mammalian development. Nature Rev. Genet.3, 662–673 (2002). ArticleCAS Google Scholar
Turner, B. M. Defining an epigenetic code. Nature Cell Biol.9, 2–6 (2007). ArticleCAS Google Scholar
Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet.38, 413–443 (2004). ArticleCAS Google Scholar
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441, 349–353 (2006). ArticleADSCAS Google Scholar
Szutorisz, H. et al. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol. Cell. Biol.25, 1804–1820 (2005). ArticleCAS Google Scholar
Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol.8, 532–538 (2006). ArticleCAS Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006). ArticleCAS Google Scholar
Klose, R. J., Kallin, E. M. & Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nature Rev. Genet.7, 715–727 (2006). ArticleCAS Google Scholar
Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet.39, 237–242 (2007). ArticleCAS Google Scholar
Feldman, N. Y. et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nature Cell Biol.8, 188–194 (2006). ArticleCAS Google Scholar
Simpson, A. J., Caballero, O. L., Jungbluth, A., Chen, Y. T. & Old, L. J. Cancer/testis antigens, gametogenesis and cancer. Nature Rev. Cancer5, 615–625 (2005). ArticleCAS Google Scholar
Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell121, 465–477 (2005). ArticleCAS Google Scholar
Boiani, M., Eckardt, S., Scholer, H. R. & McLaughlin, K. J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev.16, 1209–1219 (2002). ArticleCAS Google Scholar
Surani, M. A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell128, 747–762 (2007). ArticleCAS Google Scholar
Ancelin, K. et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nature Cell Biol.8, 623–630 (2006). ArticleCAS Google Scholar
Maatouk, D. M. et al. DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development133, 3411–3418 (2006). ArticleCAS Google Scholar
Surani, A. & Reik, W. in Epigenetics (eds Allis, C. D., Jenuwein, T. & Reinberg, D.) 315–327 (Cold Spring Harbor Laboratory Press, Woodbury, 2007). Google Scholar
Bourc'his, D. & Bestor, T. H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature431, 96–99 (2004). ArticleADSCAS Google Scholar
Barlow, D. P. Methylation and imprinting: from host defense to gene regulation? Science260, 309–310 (1993). ArticleADSCAS Google Scholar
Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science294, 2536–2539 (2001). ArticleADSCAS Google Scholar
Kaneda, M. et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature429, 900–903 (2004). ArticleADSCAS Google Scholar
Jelinic, P., Stehle, J. C. & Shaw, P. The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation. PLoS Biol. [online] 4, e355 (2006) (doi:10.1371/journal.pbio.0040355). Article Google Scholar
Howell, C. Y. et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell104, 829–838 (2001). ArticleCAS Google Scholar
Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature366, 362–365 (1993). ArticleADSCAS Google Scholar
Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature415, 810–813 (2002) ArticleADSCAS Google Scholar
Mancini-Dinardo, D., Steele, S. J., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev.20, 1268–1282 (2006). ArticleCAS Google Scholar
Lewis, A. et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nature Genet.36, 1291–1295 (2004). ArticleCAS Google Scholar
Umlauf, D. et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nature Genet.36, 1296–1300 (2004). ArticleCAS Google Scholar
Kanduri, C., Thakur, N. & Pandey, R. R. The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing. EMBO J.25, 2096–2106 (2006). ArticleCAS Google Scholar
Lewis, A. et al. Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Development133, 4203–4210 (2006). ArticleCAS Google Scholar
Chaumeil, J., Le Baccon, P., Wutz, A. & Heard, E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev.20, 2223–2227 (2006). ArticleCAS Google Scholar
Verona, R. I., Mann, M. R. & Bartolomei, M. S. Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu. Rev. Cell Dev. Biol.19, 237–259 (2003). ArticleCAS Google Scholar
Kurukuti, S. et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl Acad. Sci. USA103, 10684–10689 (2006). ArticleADSCAS Google Scholar
Okamoto, I. et al. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature438, 369–373 (2005). ArticleADSCAS Google Scholar
Sado, T. et al. X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev. Biol.225, 294–303 (2000). ArticleCAS Google Scholar
Kohlmaier, A. et al. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol. [online] 2, e171 (2004) (doi:10.1371/journal.pbio.0020171). Article Google Scholar
Mak, W. et al. Reactivation of the paternal X chromosome in early mouse embryos. Science303, 666–669 (2004). ArticleADSCAS Google Scholar
Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science303, 644–649 (2004). ArticleADSCAS Google Scholar
Heard, E. & Disteche, C. M. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev.20, 1848–1867 (2006). ArticleCAS Google Scholar
Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem.74, 481–514 (2005). ArticleCAS Google Scholar
Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev.117, 15–23 (2002). ArticleCAS Google Scholar
Lee, J. et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development129, 1807–1817 (2002). ArticleCAS Google Scholar
Seki, Y. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol.278, 440–458 (2005). ArticleCAS Google Scholar
Lane, N. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis35, 88–93 (2003). ArticleCAS Google Scholar
Imamura, M. et al. Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells. BMC Dev. Biol. [online] 6, 34 (2006) (doi:10.1186/1471-213X-6-34). Article Google Scholar
Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol.10, 475–478 (2000). ArticleCAS Google Scholar
Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature403, 501–502 (2000). ArticleADSCAS Google Scholar
Dean, W. et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl Acad. Sci. USA98, 13734–13738 (2001). ArticleADSCAS Google Scholar
Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol.241, 172–182 (2002). ArticleCAS Google Scholar
Nakamura, T. et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nature Cell Biol.9, 64–71 (2007). ArticleCAS Google Scholar
Morgan, H. D., Dean, W., Coker, H. A., Reik, W. & Petersen-Mahrt, S. K. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J. Biol. Chem.279, 52353–52360 (2004). ArticleCAS Google Scholar
Gehring, M. et al. DEMETER DNA glycosylase establishes MEDEA Polycomb gene self-imprinting by allele-specific demethylation. Cell124, 495–506 (2006). ArticleCAS Google Scholar
Morales-Ruiz, T. et al. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc. Natl Acad. Sci. USA103, 6853–6858 (2006). ArticleADSCAS Google Scholar
Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature445, 671–675 (2007). ArticleCAS Google Scholar
Reik, W. & Walter, J. Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote. Nature Genet.27, 255–256 (2001). ArticleCAS Google Scholar
Smith, A. G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol.17, 435–462 (2002). Article Google Scholar
Whitelaw, N. C. & Whitelaw, E. How lifetimes shape epigenotype within and across generations. Hum. Mol. Genet.15, R131–R137 (2006). ArticleCAS Google Scholar
Blewitt, M. E., Vickaryous, N. K., Paldi, A., Koseki, H. & Whitelaw, E. Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet. [online] 2, e49 (2006) (doi:10.1371/journal.pgen.0020049). ArticleCAS Google Scholar
Bean, C. J., Schaner, C. E. & Kelly, W. G. Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nature Genet.36, 100–105 (2004). ArticleCAS Google Scholar
Namekawa, S. H. et al. Postmeiotic sex chromatin in the male germline of mice. Curr. Biol.16, 660–667 (2006). ArticleCAS Google Scholar
Rossant, J. Lineage development and polar asymmetries in the peri-implantation mouse blastocyst. Semin. Cell Dev. Biol.15, 573–581 (2004). Article Google Scholar
Torres-Padilla, M.E., Parfitt, D.E., Kouzarides, T. & Zernicka-Goetz, M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature445, 214–218 (2007). ArticleADSCAS Google Scholar
Yang, X. et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nature Genet.39, 295–302 (2007). ArticleCAS Google Scholar