In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state (original) (raw)
Hochedlinger, K. & Jaenisch, R. Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N. Engl. J. Med.349, 275–286 (2003) ArticleCAS Google Scholar
Yang, X. et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nature Genet.39, 295–302 (2007) ArticleCAS Google Scholar
Hochedlinger, K. & Jaenisch, R. Nuclear reprogramming and pluripotency. Nature441, 1061–1067 (2006) ArticleADSCAS Google Scholar
Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol.11, 1553–1558 (2001) ArticleCAS Google Scholar
Cowan, C. A., Atienza, J., Melton, D. A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science309, 1369–1373 (2005) ArticleADSCAS Google Scholar
Jaenisch, R. Human cloning—the science and ethics of nuclear transplantation. N. Engl. J. Med.351, 2787–2791 (2004) ArticleCAS Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006) ArticleCAS Google Scholar
Labosky, P. A., Barlow, D. P. & Hogan, B. L. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development120, 3197–3204 (1994) CASPubMed Google Scholar
Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122, 947–956 (2005) ArticleCAS Google Scholar
Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet.38, 431–440 (2006) ArticleCAS Google Scholar
Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell125, 301–313 (2006) ArticleCAS Google Scholar
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441, 349–353 (2006) ArticleADSCAS Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006) ArticleCAS Google Scholar
Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol.8, 532–538 (2006) ArticleCAS Google Scholar
Jackson-Grusby, L. et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genet.27, 31–39 (2001) ArticleCAS Google Scholar
Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69, 915–926 (1992) ArticleCAS Google Scholar
Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res.33, 5868–5877 (2005) ArticleCAS Google Scholar
Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl Acad. Sci. USA101, 10380–10385 (2004) ArticleADSCAS Google Scholar
Holm, T. M. et al. Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell8, 275–285 (2005) ArticleCAS Google Scholar
Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99, 247–257 (1999) ArticleCAS Google Scholar
Stewart, C. L., Stuhlmann, H., Jähner, D. & Jaenisch, R. De novo methylation, expression, and infectivity of retroviral genomes introduced into embryonal carcinoma cells. Proc. Natl Acad. Sci. USA79, 4098–4102 (1982) ArticleADSCAS Google Scholar
Jähner, D. et al. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature298, 623–628 (1982) ArticleADS Google Scholar
Maherali, N. et al. Global epigenetic remodeling in directly reprogrammed fibroblasts. Cell Stem Cells (in the press)
Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113, 631–642 (2003) ArticleCAS Google Scholar
Chapman, V., Forrester, L., Sanford, J., Hastie, N. & Rossant, J. Cell lineage specific undermethylation of mouse repetitive DNA. Nature307, 284–286 (1984) ArticleADSCAS Google Scholar
Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet.20, 116–117 (1998) ArticleCAS Google Scholar
Blelloch, R. et al. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells24, 2007–2013 (2006) ArticleCAS Google Scholar
Lucifero, D., Mertineit, C., Clarke, H. J., Bestor, T. H. & Trasler, J. M. Methylation dynamics of imprinted genes in mouse germ cells. Genomics79, 530–538 (2002) ArticleCAS Google Scholar
Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell121, 465–477 (2005) ArticleCAS Google Scholar
Wernig, M. et al. Functional integration of embryonic stem cell-derived neurons in vivo. J. Neurosci.24, 5258–5268 (2004) ArticleCAS Google Scholar
Brambrink, T., Hochedlinger, K., Bell, G. & Jaenisch, R. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc. Natl Acad. Sci. USA103, 933–938 (2006) ArticleADSCAS Google Scholar
Eads, C. A. & Laird, P. W. Combined bisulfite restriction analysis (COBRA). Methods Mol. Biol.200, 71–85 (2002) CASPubMed Google Scholar
Peitz, M., Pfannkuche, K., Rajewsky, K. & Edenhofer, F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl Acad. Sci. USA99, 4489–4494 (2002) ArticleADSCAS Google Scholar
Eggan, K. et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl Acad. Sci. USA98, 6209–6214 (2001) ArticleADSCAS Google Scholar
Naviaux, R. K., Costanzi, E., Haas, M. & Verma, I. M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol.70, 5701–5705 (1996) CASPubMedPubMed Central Google Scholar