Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation (original) (raw)
References
Wolffe, A.P. & Matzke, M.A. Epigenetics: regulation through repression. Science286, 481– 486 (1999). ArticleCAS Google Scholar
Bird, A.P. & Wolffe, A.P. Methylation-induced repression—belts, braces, and chromatin. Cell99, 451– 454 (1999). ArticleCAS Google Scholar
Jaenisch, R. DNA methylation and imprinting: why bother? Trends Genet.13, 323–329 (1997). ArticleCAS Google Scholar
Lei, H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development122, 3195– 3205 (1996). CASPubMed Google Scholar
Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69, 915–926 (1992). ArticleCAS Google Scholar
Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development . Cell99, 247–257 (1999). ArticleCAS Google Scholar
Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature366, 362–365 ( 1993). ArticleCAS Google Scholar
Beard, C., Li, E. & Jaenisch, R. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev.9, 2325– 2334 (1995). ArticleCAS Google Scholar
Panning, B. & Jaenisch, R. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev.10, 1991–2002 (1996). ArticleCAS Google Scholar
Stancheva, I. & Meehan, R.R. Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos. Genes Dev.14, 313–327 (2000). CASPubMedPubMed Central Google Scholar
Baylin, S.B. & Herman, J.G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet.16, 168–174 (2000). ArticleCAS Google Scholar
Jones, P.A. & Laird, P.W. Cancer epigenetics comes of age . Nature Genet.21, 163– 167 (1999). ArticleCAS Google Scholar
Laird, P.W. et al. Suppression of intestinal neoplasia by DNA hypomethylation . Cell81, 197–205 (1995). ArticleCAS Google Scholar
Chen, R.Z., Pettersson, U., Beard, C., Jackson-Grusby, L. & Jaenisch, R. DNA hypomethylation leads to elevated mutation rates. Nature395, 89– 93 (1998). ArticleCAS Google Scholar
Hansen, R.S. et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. USA96, 14412–14417 (1999). ArticleCAS Google Scholar
Xu, G.L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature402 , 187–191 (1999). ArticleCAS Google Scholar
Sauer, B. & Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA85, 5166– 5170 (1988). ArticleCAS Google Scholar
Margot, J.B. et al. Structure and function of the mouse DNA methyltransferase gene: Dnmt1 shows a tripartite structure. J. Mol. Biol.297, 293–300 (2000). ArticleCAS Google Scholar
Onishi, M. et al. Applications of retrovirus-mediated expression cloning. Exp. Hematol.24, 324–329 (1996). CASPubMed Google Scholar
Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell88, 323–331 (1997). ArticleCAS Google Scholar
Hakem, R., de la Pompa, J.L., Elia, A., Potter, J. & Mak, T.W. Partial rescue of Brca1 (5-6) early embryonic lethality by p53 or p21 null mutation. Nature Genet.16, 298–302 ( 1997). ArticleCAS Google Scholar
Lim, D.S. & Hasty, P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol.16, 7133–7143 (1996). ArticleCAS Google Scholar
Ludwig, T., Chapman, D.L., Papaioannou, V.E. & Efstratiadis, A. Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev.11, 1226– 1241 (1997). ArticleCAS Google Scholar
Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol.4, 1–7 ( 1994). ArticleCAS Google Scholar
Emerman, M. & Temin, H.M. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell39, 449–467 ( 1984). ArticleCAS Google Scholar
Leonhardt, H., Page, A.W., Weier, H.U. & Bestor, T.H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei . Cell71, 865–873 (1992). ArticleCAS Google Scholar
Chuang, L.S. et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science277, 1996– 2000 (1997). ArticleCAS Google Scholar
Fambrough, D., McClure, K., Kazlauskas, A. & Lander, E.S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell97, 727–741 (1999). ArticleCAS Google Scholar
Bird, A. & Tweedie, S. Transcriptional noise and the evolution of gene number. Philos. Trans. R. Soc. Lond. B. Biol. Sci.349, 249–253 (1995). ArticleCAS Google Scholar
Yoder, J.A., Walsh, C.P. & Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet.13, 335– 340 (1997). ArticleCAS Google Scholar
Fan, G.P. et al. DNA hypomethyation perturbs the function and survival of CNS neurons in postnatal animals. J. Neurosci. (in press).
Sabapathy, K., Klemm, M., Jaenisch, R. & Wagner, E.F. Regulation of ES cell differentiation by functional and conformational modulation of p53 . EMBO J.16, 6217–6229 (1997). ArticleCAS Google Scholar
Hermeking, H. & Eick, D. Mediation of c-Myc-induced apoptosis by p53. Science265, 2091– 2093 (1994). ArticleCAS Google Scholar
Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol.18, 6538–6547 ( 1998). ArticleCAS Google Scholar
Michaelson, J.S., Bader, D., Kuo, F., Kozak, C. & Leder, P. Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev.13, 1918–1923 (1999). ArticleCAS Google Scholar
Walsh, C.P., Chaillet, J.R. & Bestor, T.H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet.20, 116–117 (1998). ArticleCAS Google Scholar
Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev.11, 156–166 (1997). ArticleCAS Google Scholar
Cormier, R.T. & Dove, W.F. Dnmt1N/+ reduces the net growth rate and multiplicity of intestinal adenomas in C57BL/6-multiple intestinal neoplasia (Min)/+ mice independently of p53 but demonstrates strong synergy with the modifier of Min 1(AKR) resistance allele. Cancer Res.60, 3965–3970 (2000). CASPubMed Google Scholar
Rhee, I. et al. CpG methylation is maintained in human cancer cells lacking DNMT1 . Nature404, 1003–1007 (2000). ArticleCAS Google Scholar
Knox, J.D. et al. Inhibition of DNA methyltransferase inhibits DNA replication . J. Biol. Chem.275, 17986– 17990 (2000). ArticleCAS Google Scholar
Fuks, F., Burgers, W.A., Brehm, A., Hughes-Davies, L. & Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genet.24, 88–91 (2000). ArticleCAS Google Scholar
Robertson, K.D. et al. DNMT1 forms a complex with rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genet.25, 338–342 (2000). ArticleCAS Google Scholar
Rountree, M.R., Bachman, K.E. & Baylin, S.B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genet.25 , 269–277 (2000). ArticleCAS Google Scholar
Bird, A. Does DNA methylation control transposition of selfish elements in the germline? Trends Genet.13, p469– 472 (1997). Article Google Scholar
Yoder, J.A., Walsh, C.P. & Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet.13, 335– 340 (1997). ArticleCAS Google Scholar
Walsh, C.P. & Bestor, T.H. Cytosine methylation and mammalian development. Genes Dev.13, 26– 34 (1999). ArticleCAS Google Scholar
Colosi, P., Talamantes, F. & Linzer, D.I. Molecular cloning and expression of mouse placental lactogen I complementary deoxyribonucleic acid. Mol. Endocrinol.1, 767–776 ( 1987). ArticleCAS Google Scholar
Ruggiu, M. et al. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature389, 73– 77 (1997). ArticleCAS Google Scholar
Jat, P.S., Cepko, C.L., Mulligan, R.C. & Sharp, P.A. Recombinant retroviruses encoding simian virus 40 large T antigen and polyomavirus large and middle T antigens. Mol. Cell. Biol.6, 1204–1217 (1986). ArticleCAS Google Scholar
O'Gorman, S., Dagenais, N.A., Qian, M. & Marchuk, Y. Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl. Acad. Sci. USA94, 14602–14607 (1997). ArticleCAS Google Scholar
Church, G.M. & Gilbert, W. Genomic sequencing. Proc. Natl. Acad. Sci. USA81, 1991– 1995 (1984). ArticleCAS Google Scholar
Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA95, 14863– 14868 (1998). ArticleCAS Google Scholar
Gaudet, F., Talbot, D., Leonhardt, H. & Jaenisch, R. A short DNA methyltransferase isoform restores methylation in vivo. J. Biol. Chem.273, 32725–32729 (1998). ArticleCAS Google Scholar