Snapshots of nuclear pore complexes in action captured by cryo-electron tomography (original) (raw)

References

  1. Fahrenkrog, B., Koser, J. & Aebi, U. The nuclear pore complex: a jack of all trades. Trends Biochem. Sci. 29, 175–182 (2004)
    Article CAS Google Scholar
  2. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nature Rev. Mol. Cell Biol. 4, 757–766 (2003)
    Article CAS Google Scholar
  3. Lucic, V., Forster, F. & Baumeister, W. Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74, 833–865 (2005)
    Article CAS Google Scholar
  4. Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 (2004)
    Article ADS CAS Google Scholar
  5. Akey, C. W. Structural plasticity of the nuclear pore complex. J. Mol. Biol. 248, 273–293 (1995)
    CAS PubMed Google Scholar
  6. Hinshaw, J. E. & Milligan, R. A. Nuclear pore complexes exceeding eightfold rotational symmetry. J. Struct. Biol. 141, 259–268 (2003)
    Article CAS Google Scholar
  7. Saxton, W. O. & Baumeister, W. The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microsc. 127, 127–138 (1982)
    Article CAS Google Scholar
  8. Saxton, W. O., Durr, R. & Baumeister, W. From lattice distortion to molecular distortion—characterizing and exploiting crystal deformation. Ultramicroscopy 46, 287–306 (1992)
    Article CAS Google Scholar
  9. Melcak, I., Hoelz, A. & Blobel, G. Structure of Nup58/45 suggests flexible nuclear pore diameter by intermolecular sliding. Science 315, 1729–1732 (2007)
    Article ADS CAS Google Scholar
  10. Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004)
    Article Google Scholar
  11. Drin, G. et al. A general amphipathic alpha-helical motif for sensing membrane curvature. Nature Struct. Mol. Biol. 14, 138–146 (2007)
    Article CAS Google Scholar
  12. Stoffler, D. et al. Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328, 119–130 (2003)
    Article CAS Google Scholar
  13. King, M. C., Lusk, C. P. & Blobel, G. Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 442, 1003–1007 (2006)
    Article ADS CAS Google Scholar
  14. Yang, W., Gelles, J. & Musser, S. M. Imaging of single-molecule translocation through nuclear pore complexes. Proc. Natl Acad. Sci. USA 101, 12887–12892 (2004)
    Article ADS CAS Google Scholar
  15. Rutherford, S. A., Goldberg, M. W. & Allen, T. D. Three-dimensional visualization of the route of protein import: the role of nuclear pore complex substructures. Exp. Cell Res. 232, 146–160 (1997)
    Article CAS Google Scholar
  16. Kiseleva, E., Goldberg, M. W., Allen, T. D. & Akey, C. W. Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J. Cell Sci. 111, 223–236 (1998)
    Article CAS Google Scholar
  17. Pante, N. & Aebi, U. Sequential binding of import ligands to distinct nucleopore regions during their nuclear import. Science 273, 1729–1732 (1996)
    Article ADS CAS Google Scholar
  18. Walther, T. C. et al. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J. Cell Biol. 158, 63–77 (2002)
    Article CAS Google Scholar
  19. Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003)
    Article CAS Google Scholar
  20. Ben-Efraim, I. & Gerace, L. Gradient of increasing affinity of importin beta for nucleoporins along the pathway of nuclear import. J. Cell Biol. 152, 411–417 (2001)
    Article CAS Google Scholar
  21. Matunis, M. J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470 (1996)
    Article CAS Google Scholar
  22. Wu, J., Matunis, M. J., Kraemer, D., Blobel, G. & Coutavas, E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem. 270, 14209–14213 (1995)
    Article CAS Google Scholar
  23. Coggan, J. S. et al. Evidence for ectopic neurotransmission at a neuronal synapse. Science 309, 446–451 (2005)
    Article ADS CAS Google Scholar
  24. Becskei, A. & Mattaj, I. W. Quantitative models of nuclear transport. Curr. Opin. Cell Biol. 17, 27–34 (2005)
    Article CAS Google Scholar
  25. Smith, A. E., Slepchenko, B. M., Schaff, J. C., Loew, L. M. & Macara, I. G. Systems analysis of Ran transport. Science 295, 488–491 (2002)
    Article ADS CAS Google Scholar
  26. Gorlich, D., Seewald, M. J. & Ribbeck, K. Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J. 22, 1088–1100 (2003)
    Article Google Scholar
  27. Riddick, G. & Macara, I. G. A systems analysis of importin-α-β mediated nuclear protein import. J. Cell Biol. 168, 1027–1038 (2005)
    Article CAS Google Scholar
  28. Matsuura, Y. & Stewart, M. Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. EMBO J. 24, 3681–3689 (2005)
    Article CAS Google Scholar
  29. Frey, S., Richter, R. P. & Gorlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006)
    Article ADS CAS Google Scholar
  30. Patel, S. S., Belmont, B. J., Sante, J. M. & Rexach, M. F. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129, 83–96 (2007)
    Article CAS Google Scholar

Download references