The nuclear pore complex: nucleocytoplasmic transport and beyond (original) (raw)
References
Stoffler, D., Fahrenkrog, B. & Aebi, U. The nuclear pore complex: from molecular architecture to functional dynamics. Curr. Opin. Cell Biol.11, 391–401 (1999). ArticleCASPubMed Google Scholar
Conti, E. & Izaurralde, E. Nucleocytoplasmic transport enters the atomic age. Curr. Opin. Cell Biol.13, 310–319 (2001). ArticleCASPubMed Google Scholar
Lei, E. P. & Silver, P. A. Protein and RNA export from the nucleus. Dev. Cell2, 261–272 (2002). ArticleCASPubMed Google Scholar
Fahrenkrog, B. & Aebi, U. The vertebrate nuclear pore complex: from structure to function. Results Probl. Cell Differ.35, 25–48 (2002). ArticleCASPubMed Google Scholar
Vasu, S. K. & Forbes, D. J. Nuclear pores and nuclear assembly. Curr. Opin. Cell Biol.13, 363–375 (2001). ArticleCASPubMed Google Scholar
Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol.158, 915–927 (2002). ArticleCASPubMedPubMed Central Google Scholar
Stoffler, D., Feja, B., Fahrenkrog, B., Walz, J., Typke, D. & Aebi, U. Cryo-electron tomography provides novel insights into nuclear pore architecture — implications for nucleocytoplasmic transport. J. Mol. Biol.328, 119–130 (2003). Presents the first 3D reconstruction of fully nativeXenopusNPCs embedded in thick amorphous ice. The distal ring of the nuclear basket, as well as the origins of the cytoplasmic filaments, could be resolved for the first time in this 3D reconstruction. ArticleCASPubMed Google Scholar
Rout, M. P. & Blobel, G. Isolation of the yeast nuclear pore complex. J. Cell Biol.109, 2641–2652 (1993). Google Scholar
Fahrenkrog, B., Hurt, E. C., Aebi, U. & Panté, N. Molecular architecture of the yeast nuclear pore complex: localization of Nsp1p subcomplexes. J. Cell Biol.143, 577–588 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yang, Q., Rout, M. P. & Akey, C. W. Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol. Cell1, 223–234 (1998). ArticleCASPubMed Google Scholar
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture and transport mechanism. J. Cell Biol.148, 635–651 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hinshaw, J. E., Carragher, B. O. & Milligan, R. A. Architecture and design of the nuclear pore complex. Cell69, 1133–1141 (1992). ArticleCASPubMed Google Scholar
Akey, C. W. & Radermacher, M. Architecture of the Xenopus nuclear pore complex revealed by 3-dimensional cryo-electron microscopy. J. Cell Biol.122, 1–19 (1993). ArticleCASPubMed Google Scholar
Soullan, B. & Worman, H. J. The amino-terminal domain of the lamin B receptor is a nuclear envelope targeting signal. J. Cell Biol.120, 1093–1100 (1993). Article Google Scholar
Danker, T. et al. Nuclear hourglass technique: an approach that detects electrically open nuclear pores in Xenopus laevis oocyte. Proc. Natl Acad. Sci. USA96, 13530–13535 (1999). ArticleCASPubMedPubMed Central Google Scholar
Akey, C. W. Structural plasticity of the nuclear pore complex. J. Mol. Biol.248, 273–293 (1995). CASPubMed Google Scholar
Rakowska, A., Danker, T., Schneider, S. W. & Oberleithner, H. ATP-induced shape changes of nuclear pores visualized with the atomic force microscope. J. Membr. Biol.163, 129–136 (1998). ArticleCASPubMed Google Scholar
Stoffler, D., Goldie, K. N. & Aebi, U. Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. J. Mol. Biol.287, 741–752 (1999). ArticleCASPubMed Google Scholar
Kiseleva, E., Goldberg, M. W., Allen, T. D. & Akey, C. W. Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J. Cell Sci.111, 223–236 (1998). ArticleCASPubMed Google Scholar
Feldherr, C. & Akin, D. The location of the transport gate in the nuclear pore complex. J. Cell Sci.110, 3065–3070 (1997). ArticleCASPubMed Google Scholar
Peters, R., Coutavas, E. & Siebrasse, J. P. Nuclear transport kinetics in microarrays of nuclear envelope patches. J. Struct. Biol.140, 268–278 (2003). Article Google Scholar
Dworetzky, S. I., Lanford, R. E. & Feldherr, C. M. The effects of variations in the number and sequence of targeting signals on nuclear uptake. J. Cell Biol.107, 1279–1287 (1988). ArticleCASPubMed Google Scholar
Panté, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of ∼39 nm. Mol. Biol. Cell13, 425–434 (2002). A comprehensive study to elucidate the functional diameter of the central pore of the NPC, which indicated that the functional diameter has been severely underestimated in the past. ArticlePubMedPubMed Central Google Scholar
Jarnik, M. & Aebi, U. Towards a 3-D model of the nuclear pore complex. J. Struct. Biol.107, 291–308 (1991). ArticleCASPubMed Google Scholar
Shahin, V., Danker, T., Enss, K., Ossig, R. & Oberleithner, H. Evidence for Ca2+- and ATP-sensitive peripheral channels in nuclear pore complexes. FASEB J.15, 1895–1901 (2001). ArticleCASPubMed Google Scholar
Danker, T. & Oberleithner, H. Nuclear pore function viewed with atomic force microscopy. Eur. J. Physiol.439, 671–681 (2000). ArticleCAS Google Scholar
Panté, N. & Aebi, U. Sequential binding of import ligands to distinct nucleopore regions during nuclear import. Science273, 1729–1732 (1996). ArticlePubMed Google Scholar
Panté, N., Bastos, R., McMorrow, I., Burke, B. & Aebi, U. Interactions and three-dimensional localization of a group of nuclear pore complex proteins. J. Cell Biol.126, 603–617 (1994). ArticlePubMed Google Scholar
Fahrenkrog, B. et al. Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex. J. Struct. Biol.140, 254–267 (2002). Shows that the carboxy-terminal, FG-repeat domain of Nup153 is highly mobile in the NPC, whereas Nup153 is tethered to the NPC by its static amino-terminal and zinc-finger domains. ArticleCASPubMed Google Scholar
Frosst, P., Guan, T., Subauste, C., Hahn, K. & Gerace, L. Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J. Cell Biol.156, 617–630 (2002). ArticleCASPubMedPubMed Central Google Scholar
Griffis, E. R., Xu, S. & Powers, M. A. Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Mol. Biol. Cell14, 600–610 (2003). The first study that clearly shows that Nup98 does not belong to the asymmetric nucleoporins, but is localized to both faces of the NPC. ArticleCASPubMedPubMed Central Google Scholar
Dilworth, D. J. et al. Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. J. Cell Biol.153, 1456–1478 (2001). Article Google Scholar
Denning, D. et al. The nucleoporin Nup60p functions as a Gsp1-GTP-sensitive tether for Nup2p at the nuclear pore complex. J. Cell Biol.154, 937–950 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lindsay, M. E., Plafker, K., Smith, A. E., Clurman, B. E. & Macara, I. G. Npap60/Nup50 is a tri-stable switch that stimulates importin-α:β-mediated nuclear protein import. Cell110, 349–360 (2002). Describes a new role for the nucleoporin Npap60/Nup50 as a cofactor in importin-α–importin-β-mediated nuclear protein import. ArticleCASPubMed Google Scholar
Boer, J. M., van Deursen, J. M. A., Huib, H. C., Fransen, J. A. M. & Grosveld, G. C. The nucleoporin CAN/Nup214 binds to both the cytoplasmic and the nucleoplasmic sides of the nuclear pore complex in overexpressing cells. Exp. Cell Res.232, 182–185 (1997). ArticleCASPubMed Google Scholar
Nakielny, S., Shaikh, S., Burke, B. & Dreyfuss, G. Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain. EMBO J.18, 1982–1995 (1999). ArticleCASPubMedPubMed Central Google Scholar
Zolotukhin, A. & Felber, B. K. Nucleoporins Nup98 and Nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J. Virol.73, 120–127 (1999). ArticleCASPubMedPubMed Central Google Scholar
Allen, N. P. C. et al. Deciphering networks of protein interactions at the nuclear pore complex. Mol. Cell. Proteomics1, 930–946 (2002). ArticleCASPubMed Google Scholar
Bayliss, R., Littlewood, T. & Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell102, 99–108 (2000). Describes the first crystal structure of a complex between the FG-repeat domain of a nucleoporin and a fragment of importin-β, which showed that FG repeats are predominantly unstructured. ArticleCASPubMed Google Scholar
Denning, D. P., Uversky, V., Patel, S. S., Fink, A. L. & Rexach, M. The Saccharomyces cerevisiae nucleoporin Nup2p is a natively unfolded protein. J. Biol. Chem.277, 33447–33455 (2002). A physical and structural characterization of the yeast nucleoporin Nup2, which showed that Nup2 has little secondary structure and is highly flexible. This is consistent with the idea that Nup2 is natively unfolded. ArticleCASPubMed Google Scholar
Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG-repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA100, 2450–2455 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cordes, V. C., Reidenbach, S., Rackwitz, H. R. & Franke, W. W. Identification of protein p270/Tpr as a constitutive component of the nuclear-pore attached intranuclear filaments. J. Cell Biol.136, 515–529 (1997). ArticleCASPubMedPubMed Central Google Scholar
Fontoura, B. M., Dales, S., Blobel, G. & Zhong, H. The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR. Proc. Natl Acad. Sci. USA98, 3208–3213 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zimowska, G., Aris, J. P. & Paddy, M. R. A Drosophila Tpr protein homolog is localized both in the extrachromosomal channel network and to nuclear pore complexes. J. Cell Sci.110, 927–944 (1997). ArticleCASPubMed Google Scholar
Kusova, B. et al. Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with Nic96p. J. Biol. Chem.275, 343–350 (1999). Article Google Scholar
Strambio-de-Castillia, C., Blobel, G. & Rout, M. P. Proteins connecting the nuclear pore complex with the nuclear interior. J. Cell Biol.144, 839–855 (1999). ArticleCASPubMedPubMed Central Google Scholar
Zimowska, G. & Paddy, M. R. Structures and dynamics of Drosophila Tpr inconsistent with a static, filamentous structure. Exp. Cell Res.276, 223–232 (2002). ArticleCASPubMed Google Scholar
Hase, M. E., Kuznetsov, N. V. & Cordes, V. C. Amino acid substitutions of coiled-coil protein Tpr abrogate anchorage to the nuclear pore complex but not parallel, in-register homodimerization. Mol. Biol. Cell12, 2433–2452 (2001). ArticleCASPubMedPubMed Central Google Scholar
Radu, A., Moore, M. S. & Blobel, G. The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell81, 215–222 (1995). ArticleCASPubMed Google Scholar
Griffis, E. R., Altan, N., Lippincott-Schwartz, J. & Powers, M. A. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol. Biol. Cell13, 1282–1297 (2002). ArticleCASPubMedPubMed Central Google Scholar
Powers, M., Forbes, D. J., Dahlberg, J. E. & Lund, E. The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways. J. Cell Biol.136, 241–250 (1997). ArticleCASPubMedPubMed Central Google Scholar
Campbell, M. S., Chan, G. K. T. & Yen, T. J. Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. J. Cell Sci.114, 953–963 (2000). Article Google Scholar
Iouk, T., Kerscher, O., Scott, R. J., Basrai, M. A. & Wozniak, R. The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J. Cell Biol.159, 807–819 (2002). ArticleCASPubMedPubMed Central Google Scholar
Smith, S. & de Lange, T. Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes. J. Cell Sci.112, 3649–3656 (1999). ArticleCASPubMed Google Scholar
Belgareh, N. et al. An evolutionary conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol.154, 1147–1160 (2001). ArticleCASPubMedPubMed Central Google Scholar
Joseph, J., Tan, S. H., Karpova, T. S., McNally, J. G. & Dasso, M. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J. Cell Biol.156, 595–602 (2002). ArticleCASPubMedPubMed Central Google Scholar
Theodoropoulos, P. A., Polioudaki, H., Koulentaki, M., Kouromalis, E. & Georgatos, S. D. PBC68: a nuclear pore complex protein that associates reversibly with the mitotic spindle. J. Cell Sci.112, 3049–3059 (1999). ArticleCASPubMed Google Scholar
Wang, X. et al. The mitotic checkpoint protein hBUB3 and the mRNA export factor hRAE1 interact with Gle2p-binding sequence (GLEBS)-containing proteins. J. Biol. Chem.276, 26559–26567 (2002). Article Google Scholar
Babu, J. R. et al. Rae1 is an essential mitotic checkpoint regulator that coorporates with Bub3 to prevent chromosome segregation. J. Cell Biol.160, 341–353 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kerscher, O., Hieter, P., Winey, M. & Basrai, M. A. Novel role for a Sacharomyces cerevisiae nucleoporin, Nup170p, in chromosome segregation. Genetics157, 1543–1553 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nemergut, M. E. & Macara, I. G. Nuclear import of the Ran exchange factor, RCC1, is mediated by at least two distinct mechanisms. J. Cell Biol.149, 835–849 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rexach, M. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell83, 683–692 (1995). ArticleCASPubMed Google Scholar
Shah, S., Tugendreich, S. & Forbes, D. Major binding sites for the nuclear import receptor are the internal nucleoporin Nup153 and the adjacent nuclear filament protein Tpr. J. Cell Biol.141, 31–40 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bayliss, R., Littlewood, T., Strawn, L. A., Wente, S. R. & Stewart, M. GLFG and FxFG nucleoporins bind to overlapping site on importin-β. J. Biol. Chem.277, 50597–50606 (2002). ArticleCASPubMed Google Scholar
Fribourg, S., Braun, I. C., Izaurralde, E. & Conti, E. Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of TAP/p15 mRNA nuclear export factor. Mol. Cell8, 645–656 (2001). ArticleCASPubMed Google Scholar
Grant, R. P., Neuhaus, D. & Stewart, M. Structural basis for the interaction between the Tap/NXF1 UBA domain and FG nucleoporins at 1 Å resolution. J. Mol. Biol.326, 849–858 (2003). ArticleCASPubMed Google Scholar
Bayliss, R., Leung, S. W., Baker, R. P., Quimby, B. B., Corbett, A. & Stewart, M. Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO J.21, 2843–2853 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ben-Efraim, I. & Gerace, L. Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import. J. Cell Biol.152, 411–417 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yokoyama, N. et al. A giant nucleopore protein that binds Ran/TC4. Nature13, 184–188 (1995). Article Google Scholar
Walther, T. C. et al. The nucleoporin Nup153 is required for nuclear pore basket formation, nuclear pore anchoring and import of a subset of nuclear proteins. EMBO J.20, 5703–5714 (2001). ArticleCASPubMedPubMed Central Google Scholar
Delphin, C., Guan, T., Melchior, F. & Gerace, L. RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol. Biol. Cell8, 2379–2390 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ribbeck, K. & Görlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J.21, 2664–2671 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bayliss, R. et al. Interaction between NTF2 an xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J. Mol. Biol.293, 579–593 (1999). ArticleCASPubMed Google Scholar
Grant, R. P., Hurt, E., Neuhaus, D. & Stewart, M. Structure of the C-terminal FG-nucleoporin binding domain of TAP/NXF1. Nature Struct. Biol.9, 247–251 (2002). ArticleCASPubMed Google Scholar
Shulga, N. & Goldfarb, D. S. Binding dynamics of structural nucleoporins govern nuclear pore complex permeability and may mediate channel gating. Mol. Cell. Biol.23, 534–542 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bickel, T. & Bruinsma, R. The nuclear pore complex mystery and anomalous diffusion in reversible gels. Biophys. J.83, 3079–3087 (2002). ArticleCASPubMedPubMed Central Google Scholar
Salman, H., Zbaida, D., Rabin, Y., Chatenay, D. & Elbaum, M. Kinetics and mechanism of DNA uptake into the cell nucleus. Proc. Natl Acad. Sci. USA98, 7247–7252 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chook, Y. M. & Blobel, G. Structure of the nuclear transport complex karyopherin-β2–Ran·GppNHp. Nature399, 230–237 (1999). ArticleCASPubMed Google Scholar
Vetter, I. R., Arndt, A., Kutay, U., Görlich, D. & Wittinghofer, A. Structural view of the Ran–importin-β interaction at 2.3 Å resolution. Cell97, 635–646 (1999). ArticleCASPubMed Google Scholar
Chook, Y. M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol.11, 703–715 (2002). Article Google Scholar
Siebrasse, J. P. & Peters, R. Rapid translocation of NTF2 through the nuclear pore of isolated nuclei and nuclear envelopes. EMBO Rep.3, 887–892 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kose, S., Imamoto, N., Tachibana, T., Yoshida, M. & Yoneda, Y. β-subunit of nuclear pore-targeting complex (importin-β) can be exported from the nucleus in a Ran-independent manner. J. Biol. Chem.274, 3946–3952 (1999). ArticleCASPubMed Google Scholar
Yokoya, F., Imamoto, N., Tachibana, T. & Yoneda, Y. β-Catenin can be transported into the nucleus in a Ran-unassisted manner. Mol. Biol. Cell10, 1119–1131 (1999). ArticleCASPubMedPubMed Central Google Scholar
Alberts, B. & Miake-Lye, R. Unscrambling the puzzle of biological machines: the importance of the details. Cell68, 415–420 (1992). ArticleCASPubMed Google Scholar
Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular proteins. Science288, 88–95 (2000). ArticleCASPubMed Google Scholar
Sablin, E. P. & Fletterick, R. J. Nucleotide switches in molecular motors: structural analysis of kinesins and myosins. Curr. Opin. Struct. Biol.11, 716–724 (2001). ArticleCASPubMed Google Scholar
Kosztin, I., Bruinsma, R., O'Lague, P. & Schulten, K. Mechanical force generation by G proteins. Proc. Natl Acad. Sci. USA99, 3575–3580 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dasso, M. Running on Ran: nuclear transport and the mitotic spindle. Cell104, 321–324 (2001). ArticleCASPubMed Google Scholar
Kuersten, S., Ohno, M. & Mattaj, I. W. Nucleocytoplasmic transport: Ran, β and beyond. Trends Cell Biol.11, 497–503 (2001). ArticleCASPubMed Google Scholar
Hetzer M., Gruss, O. J. & Mattaj, I. W. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nature Cell Biol.4, E177–E184 (2002). ArticleCASPubMed Google Scholar
Ryan, K. J., McCaffery, J. M. & Wente, S. R. The RanGTPase cycle is required for yeast nuclear pore complex assembly. J. Cell Biol.160, 1041–1053 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rollenhagen, C., Mühlhäusser, P., Kutay, U. & Panté, N. Importin-β-depending nuclear import pathways: role of the adapter proteins in the docking and releasing steps. Mol. Biol. Cell14, 2104–2115 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kull, F. J., Vale, R. D. & Fletterick, R. J. The case of a common ancestor: kinesin and myosin motor proteins and G proteins. J. Muscle Res. Cell Motil.19, 877–886 (1998). ArticleCASPubMed Google Scholar
Vale, R. D. Switches, latches and amplifiers: common themes of G proteins and molecular motors. J. Cell Biol.135, 291–302 (1996). ArticleCASPubMed Google Scholar