Weis, K. Nucleocytoplasmic transport: cargo trafficking across the border. Curr. Opin. Cell Biol.14, 328–335 (2002) ArticleCASPubMed Google Scholar
Hetzer, M., Walther, T. C. & Mattaj, I. W. Pushing the envelope: Structure, function, and dynamics of the nuclear periphery. Annu. Rev. Cell Dev. Biol.21, 347–380 (2005) ArticleCASPubMed Google Scholar
Tran, E. J. & Wente, S. R. Dynamic nuclear pore complexes: life on the edge. Cell125, 1041–1053 (2006) ArticleCASPubMed Google Scholar
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–651 (2000) ArticleCASPubMedPubMed Central Google Scholar
Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol.158, 915–927 (2002) ArticleCASPubMedPubMed Central Google Scholar
Akey, C. W. & Radermacher, M. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell Biol.122, 1–19 (1993) ArticleCASPubMed Google Scholar
Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science306, 1387–1390 (2004) ArticleCASPubMedADS Google Scholar
Hinshaw, J. E., Carragher, B. O. & Milligan, R. A. Architecture and design of the nuclear pore complex. Cell69, 1133–1141 (1992) ArticleCASPubMed Google Scholar
Kiseleva, E. et al. Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. J. Struct. Biol.145, 272–288 (2004) ArticleCASPubMed Google Scholar
Stoffler, D. et al. Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol.328, 119–130 (2003) ArticleCASPubMed Google Scholar
Yang, Q., Rout, M. P. & Akey, C. W. Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol. Cell1, 223–234 (1998) ArticleCASPubMed Google Scholar
Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature doi: 10.1038/nature06404 (this issue).
Krull, S., Thyberg, J., Bjorkroth, B., Rackwitz, H. R. & Cordes, V. C. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell15, 4261–4277 (2004) ArticleCASPubMedPubMed Central Google Scholar
Pante, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell13, 425–434 (2002) ArticleCASPubMedPubMed Central Google Scholar
Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol.2, e380 (2004) ArticlePubMedPubMed CentralCAS Google Scholar
Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature432, 573–579 (2004) ArticleCASPubMedADS Google Scholar
ter Haar, E., Musacchio, A., Harrison, S. C. & Kirchhausen, T. Atomic structure of clathrin: a β propeller terminal domain joins an α zigzag linker. Cell95, 563–573 (1998) ArticleCASPubMedPubMed Central Google Scholar
Dokudovskaya, S. et al. Protease accessibility laddering: a proteomic tool for probing protein structure. Structure14, 653–660 (2006) ArticleCASPubMed Google Scholar
Fath, S., Mancias, J. D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell129, 1325–1336 (2007) ArticleCASPubMed Google Scholar
Antonin, W. & Mattaj, I. W. Nuclear pore complexes: round the bend? Nature Cell Biol.7, 10–12 (2005) ArticleCASPubMed Google Scholar
Drin, G. et al. A general amphipathic α-helical motif for sensing membrane curvature. Nature Struct. Mol. Biol.14, 138–146 (2007) ArticleCAS Google Scholar
Conti, E., Muller, C. W. & Stewart, M. Karyopherin flexibility in nucleocytoplasmic transport. Curr. Opin. Struct. Biol.16, 237–244 (2006) ArticleCASPubMed Google Scholar
Akey, C. W. Structural plasticity of the nuclear pore complex. J. Mol. Biol.248, 273–293 (1995) CASPubMed Google Scholar
Hinshaw, J. E. & Milligan, R. A. Nuclear pore complexes exceeding eightfold rotational symmetry. J. Struct. Biol.141, 259–268 (2003) ArticleCASPubMed Google Scholar
Bryant, D. M. & Stow, J. L. The ins and outs of E-cadherin trafficking. Trends Cell Biol.14, 427–434 (2004) ArticleCASPubMed Google Scholar
Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nature Cell Biol.6, 197–206 (2004) ArticleCASPubMed Google Scholar
Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol.13, 622–628 (2003) ArticleCASPubMed Google Scholar
Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA100, 2450–2455 (2003) ArticleCASPubMedPubMed CentralADS Google Scholar
Liu, S. M. & Stewart, M. Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-β homologue, Kap95p. J. Mol. Biol.349, 515–525 (2005) ArticleCASPubMed Google Scholar
Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic6, 421–427 (2005) ArticleCASPubMed Google Scholar
Isgro, T. A. & Schulten, K. Binding dynamics of isolated nucleoporin repeat regions to importin-β. Structure13, 1869–1879 (2005) ArticleCASPubMed Google Scholar
Isgro, T. A. & Schulten, K. Association of nuclear pore FG-repeat domains to NTF2 import and export complexes. J. Mol. Biol.366, 330–345 (2007) ArticleCASPubMed Google Scholar
Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nature Rev. Mol. Cell Biol.8, 195–208 (2007) ArticleCAS Google Scholar
Zilman, A., Di Talia, S., Chait, B. T., Rout, M. P. & Magnasco, M. O. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput. Biol.3, e125 (2007) ArticlePubMedPubMed CentralADSCAS Google Scholar
Paulillo, S. M. et al. Nucleoporin domain topology is linked to the transport status of the nuclear pore complex. J. Mol. Biol.351, 784–798 (2005) ArticleCASPubMed Google Scholar
Lim, R. Y. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA103, 9512–9517 (2006) ArticleCASPubMedPubMed CentralADS Google Scholar
Hawryluk-Gara, L. A., Shibuya, E. K. & Wozniak, R. W. Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol. Biol. Cell16, 2382–2394 (2005) ArticleCASPubMedPubMed Central Google Scholar
King, M. C., Lusk, C. P. & Blobel, G. Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature442, 1003–1007 (2006) ArticleCASPubMedADS Google Scholar
Saksena, S., Summers, M. D., Burks, J. K., Johnson, A. E. & Braunagel, S. C. Importin-α-16 is a translocon-associated protein involved in sorting membrane proteins to the nuclear envelope. Nature Struct. Mol. Biol.13, 500–508 (2006) ArticleCAS Google Scholar
Aitchison, J. D., Rout, M. P., Marelli, M., Blobel, G. & Wozniak, R. W. Two novel related yeast nucleoporins Nup170p and Nup157p: complementation with the vertebrate homologue Nup155p and functional interactions with the yeast nuclear pore-membrane protein Pom152p. J. Cell Biol.131, 1133–1148 (1995) ArticleCASPubMed Google Scholar
Marelli, M., Aitchison, J. D. & Wozniak, R. W. Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J. Cell Biol.143, 1813–1830 (1998) ArticleCASPubMedPubMed Central Google Scholar
Siniossoglou, S. et al. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell84, 265–275 (1996) ArticleCASPubMed Google Scholar
Wente, S. R., Rout, M. P. & Blobel, G. A new family of yeast nuclear pore complex proteins. J. Cell Biol.119, 705–723 (1992) ArticleCASPubMed Google Scholar
Unwin, P. N. & Milligan, R. A. A large particle associated with the perimeter of the nuclear pore complex. J. Cell Biol.93, 63–75 (1982) ArticleCASPubMed Google Scholar
Scannell, D. R., Butler, G. & Wolfe, K. H. Yeast genome evolution-the origin of the species. Yeast (in the press)
Schledzewski, K., Brinkmann, H. & Mendel, R. R. Phylogenetic analysis of components of the eukaryotic vesicle transport system reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI. J. Mol. Evol.48, 770–778 (1999) ArticleCASPubMedADS Google Scholar
Grandi, P. et al. A novel nuclear pore protein Nup82p which specifically binds to a fraction of Nsp1p. J. Cell Biol.130, 1263–1273 (1995) ArticleCASPubMed Google Scholar
Bailer, S. M. et al. Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex. J. Biol. Chem.275, 23540–23548 (2000) ArticleCASPubMed Google Scholar
Bailer, S. M., Balduf, C. & Hurt, E. The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport. Mol. Cell. Biol.21, 7944–7955 (2001) ArticleCASPubMedPubMed Central Google Scholar
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004) ArticleCASPubMed Google Scholar
Soding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res.33, W244–W248 (2005) ArticlePubMedPubMed CentralCAS Google Scholar