In vivo reprogramming of adult pancreatic exocrine cells to β-cells (original) (raw)
Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell100, 157–168 (2000) ArticleCAS Google Scholar
Hochedlinger, K. & Jaenisch, R. Nuclear reprogramming and pluripotency. Nature441, 1061–1067 (2006) ArticleADSCAS Google Scholar
Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell132, 631–644 (2008) ArticleCAS Google Scholar
Slack, J. M. Metaplasia and transdifferentiation: from pure biology to the clinic. Nature Rev. Mol. Cell Biol.8, 369–378 (2007) ArticleCAS Google Scholar
Brockes, J. P. & Kumar, A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nature Rev. Mol. Cell Biol.3, 566–574 (2002) ArticleCAS Google Scholar
Gurdon, J. B. From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annu. Rev. Cell Dev. Biol.22, 1–22 (2006) ArticleADSCAS Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006) ArticleCAS Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007) ArticleCAS Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007) ArticleADSCAS Google Scholar
Meissner, A., Wernig, M. & Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnol.25, 1177–1181 (2007) ArticleCAS Google Scholar
Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448, 318–324 (2007) ArticleADSCAS Google Scholar
Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature451, 141–146 (2008) ArticleADSCAS Google Scholar
Choi, J. et al. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc. Natl Acad. Sci. USA87, 7988–7992 (1990) ArticleADSCAS Google Scholar
Shen, C. N., Slack, J. M. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nature Cell Biol.2, 879–887 (2000) ArticleCAS Google Scholar
Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell117, 663–676 (2004) ArticleCAS Google Scholar
Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature449, 473–477 (2007) ArticleADSCAS Google Scholar
Whitehead, G. G., Makino, S., Lien, C. L. & Keating, M. T. fgf20 is essential for initiating zebrafish fin regeneration. Science310, 1957–1960 (2005) ArticleADSCAS Google Scholar
Tanaka, E. M. Cell differentiation and cell fate during urodele tail and limb regeneration. Curr. Opin. Genet. Dev.13, 497–501 (2003) ArticleCAS Google Scholar
Zhou, Q. et al. A multipotent progenitor domain guides pancreatic organogenesis. Dev. Cell13, 103–114 (2007) ArticleCAS Google Scholar
Murtaugh, L. C. & Melton, D. A. Genes, signals, and lineages in pancreas development. Annu. Rev. Cell Dev. Biol.19, 71–89 (2003) ArticleCAS Google Scholar
Jensen, J. Gene regulatory factors in pancreatic development. Dev. Dyn.229, 176–200 (2004) ArticleCAS Google Scholar
Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development129, 2447–2457 (2002) CASPubMed Google Scholar
Baeyens, L. et al. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia48, 49–57 (2005) ArticleCAS Google Scholar
Minami, K. et al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc. Natl Acad. Sci. USA102, 15116–15121 (2005) ArticleADSCAS Google Scholar
Wang, A. Y., Peng, P. D., Ehrhardt, A., Storm, T. A. & Kay, M. A. Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo . Hum. Gene Ther.15, 405–413 (2004) ArticleCAS Google Scholar
Wang, A. Y., Ehrhardt, A., Xu, H. & Kay, M. A. Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol. Ther.15, 255–263 (2007) ArticleCAS Google Scholar
Lammert, E. et al. Role of VEGF-A in vascularization of pancreatic islets. Curr. Biol.13, 1070–1074 (2003) ArticleCAS Google Scholar
Konstantinova, I. et al. EphA–Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets. Cell129, 359–370 (2007) ArticleCAS Google Scholar
Ferber, S. et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nature Med.6, 568–572 (2000) ArticleCAS Google Scholar
Kaneto, H. et al. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes54, 1009–1022 (2005) ArticleCAS Google Scholar
Miyatsuka, T. et al. Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem. Biophys. Res. Commun.310, 1017–1025 (2003) ArticleCAS Google Scholar
Minami, K. & Seino, S. Pancreatic acinar-to-beta cell transdifferentiation in vitro . Front. Biosci.13, 5824–5837 (2008) ArticleCAS Google Scholar
Okuno, M. et al. Generation of insulin-secreting cells from pancreatic acinar cells of animal models of type 1 diabetes. Am. J. Physiol. Endocrinol. Metab.292, E158–E165 (2007) ArticleCAS Google Scholar
Sapir, T. et al. Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc. Natl Acad. Sci. USA102, 7964–7969 (2005) ArticleADSCAS Google Scholar
Heremans, Y. et al. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J. Cell Biol.159, 303–312 (2002) ArticleCAS Google Scholar
Gasa, R. et al. Proendocrine genes coordinate the pancreatic islet differentiation program in vitro . Proc. Natl Acad. Sci. USA101, 13245–13250 (2004) ArticleADSCAS Google Scholar
Morton, R. A., Geras-Raaka, E., Wilson, L. M., Raaka, B. M. & Gershengorn, M. C. Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells. Mol. Cell. Endocrinol.270, 87–93 (2007) ArticleCAS Google Scholar
Gershengorn, M. C. et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science306, 2261–2264 (2004) ArticleADSCAS Google Scholar
De Robertis, E. M. & Gurdon, J. B. Gene activation in somatic nuclei after injection into amphibian oocytes. Proc. Natl Acad. Sci. USA74, 2470–2474 (1977) ArticleADSCAS Google Scholar
Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature429, 41–46 (2004) ArticleADSCAS Google Scholar