Pulsed contractions of an actin–myosin network drive apical constriction (original) (raw)
References
Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol.8, 633–644 (2007) ArticleADSCAS Google Scholar
Leptin, M. Gastrulation movements: the logic and the nuts and bolts. Dev. Cell8, 305–320 (2005) ArticleCAS Google Scholar
Alberts, B. et al. Molecular Biology of the Cell 5th edn (Garland Science, 2008)
Baker, P. C. & Schroeder, T. E. Cytoplasmic filaments and morphogenetic movement in the amphibian neural tube. Dev. Biol.15, 432–450 (1967) ArticleCAS Google Scholar
Burnside, B. Microtubules and microfilaments in newt neuralation. Dev. Biol.26, 416–441 (1971) ArticleCAS Google Scholar
Hildebrand, J. D. Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. J. Cell Sci.118, 5191–5203 (2005) ArticleCAS Google Scholar
Karfunkel, P. The activity of microtubules and microfilaments in neurulation in the chick. J. Exp. Zool.181, 289–301 (1972) ArticleCAS Google Scholar
Dawes-Hoang, R. E. et al. folded gastrulation, cell shape change and the control of myosin localization. Development132, 4165–4178 (2005) ArticleCAS Google Scholar
Fox, D. T. & Peifer, M. Abelson kinase (Abl) and RhoGEF2 regulate actin organization during cell constriction in Drosophila . Development134, 567–578 (2007) ArticleCAS Google Scholar
Nikolaidou, K. K. & Barrett, K. A. Rho GTPase signaling pathway is used reiteratively in epithelial folding and potentially selects the outcome of Rho activation. Curr. Biol.14, 1822–1826 (2004) ArticleCAS Google Scholar
Young, P. E., Pesacreta, T. C. & Kiehart, D. P. Dynamic changes in the distribution of cytoplasmic myosin during Drosophila embryogenesis. Development111, 1–14 (1991) CASPubMed Google Scholar
Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila . Proc. Natl Acad. Sci. USA98, 15050–15055 (2001) ArticleADSCAS Google Scholar
Oda, H. & Tsukita, S. Real-time imaging of cell–cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. J. Cell Sci.114, 493–501 (2001) CASPubMed Google Scholar
Sweeton, D., Parks, S., Costa, M. & Wieschaus, E. Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development112, 775–789 (1991) CASPubMed Google Scholar
Vavylonis, D., Wu, J. Q., Hao, S., O’Shaughnessy, B. & Pollard, T. D. Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science319, 97–100 (2008) ArticleADSCAS Google Scholar
Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles. J. Cell Biol.131, 989–1002 (1995) ArticleCAS Google Scholar
Svitkina, T. M., Verkhovsky, A. B., McQuade, K. M. & Borisy, G. G. Analysis of the actin–myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. Cell Biol.139, 397–415 (1997) ArticleCAS Google Scholar
Muller, H. A. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila . J. Cell Biol.134, 149–163 (1996) ArticleCAS Google Scholar
Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science315, 384–386 (2007) ArticleADS Google Scholar
Ip, Y. T., Maggert, K. & Levine, M. Uncoupling gastrulation and mesoderm differentiation in the Drosophila embryo. EMBO J.13, 5826–5834 (1994) ArticleCAS Google Scholar
Leptin, M. twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev.5, 1568–1576 (1991) ArticleCAS Google Scholar
Leptin, M. & Grunewald, B. Cell shape changes during gastrulation in Drosophila . Development110, 73–84 (1990) CASPubMed Google Scholar
Seher, T. C., Narasimha, M., Vogelsang, E. & Leptin, M. Analysis and reconstitution of the genetic cascade controlling early mesoderm morphogenesis in the Drosophila embryo. Mech. Dev.124, 167–179 (2007) ArticleCAS Google Scholar
Costa, M., Wilson, E. T. & Wieschaus, E. A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell76, 1075–1089 (1994) ArticleCAS Google Scholar
Keller, R., Shook, D. & Skoglund, P. The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Phys. Biol.5, 15007 (2008) ArticleADS Google Scholar
Royou, A., Sullivan, W. & Karess, R. Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J. Cell Biol.158, 127–137 (2002) ArticleCAS Google Scholar
Franke, J. D., Montague, R. A. & Kiehart, D. P. Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Curr. Biol.15, 2208–2221 (2005) ArticleCAS Google Scholar
Edwards, K. A., Demsky, M., Montague, R. A., Weymouth, N. & Kiehart, D. P. GFP–moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila . Dev. Biol.191, 103–117 (1997) ArticleCAS Google Scholar
Arziman, Z., Horn, T. & Boutros, M. E-RNAi: a web application to design optimized RNAi constructs. Nucleic Acids Res.33, W582–W588 (2005) ArticleCAS Google Scholar