Direct observation of the nanoscale dynamics of membrane lipids in a living cell (original) (raw)

References

  1. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997)
    Article ADS CAS Google Scholar
  2. Brown, D. A. & London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224 (2000)
    Article CAS Google Scholar
  3. Fielding, C. J. Lipid Rafts and Caveolae (Wiley-VCH, 2006)
    Book Google Scholar
  4. Jacobson, K., Mouritsen, O. G. & Anderson, G. W. Lipid rafts: at a crossroad between cell biology and physics. Nature Cell Biol. 9, 7–14 (2007)
    Article ADS CAS Google Scholar
  5. Hanzal-Bayer, M. F. & Hancock, J. F. Lipid rafts and membrane traffic. FEBS Lett. 581, 2098–2104 (2007)
    Article CAS Google Scholar
  6. Munro, S. Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003)
    Article CAS Google Scholar
  7. Lommerse, P. H. M., Spaink, H. P. & Schmidt, T. In vivo plasma membrane organization: results of biophysical approaches. Biochim. Biophys. Acta 1664, 119–131 (2004)
    Article CAS Google Scholar
  8. Hancock, J. F. Lipid rafts: contentious only from simplistic standpoints. Nature Rev. Mol. Cell Biol. 7, 456–462 (2006)
    Article CAS Google Scholar
  9. Shaw, A. S. Lipid rafts: now you see them, now you don’t. Nature Immunol. 7, 1139–1142 (2006)
    Article CAS Google Scholar
  10. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. 19, 780–782 (1994)
    Article ADS CAS Google Scholar
  11. Pike, L. J. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 47, 1597–1598 (2006)
    Article CAS Google Scholar
  12. Fujita, A. et al. Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol. Biol. Cell 18, 2112–2122 (2007)
    Article CAS Google Scholar
  13. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)
    Article ADS CAS Google Scholar
  14. Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984)
    Article ADS Google Scholar
  15. Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002)
    Article ADS CAS Google Scholar
  16. Saxton, M. J. & Jacobson, K. Single particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997)
    Article CAS Google Scholar
  17. Schütz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901 (2000)
    Article Google Scholar
  18. Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K. & Kusumi, A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157, 1071–1081 (2002)
    Article CAS Google Scholar
  19. Yechiel, E. & Edidin, M. Micrometer-scale domains in fibroblast plasma membranes. J. Cell Biol. 105, 755–760 (1987)
    Article CAS Google Scholar
  20. Feder, T. J., Brust-Mascher, I., Slattery, J. P., Baird, B. A. & Webb, W. W. Constrainted diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys. J. 70, 2767–2773 (1996)
    Article ADS CAS Google Scholar
  21. Fahey, P. F. et al. Lateral diffusion in planar lipid bilayers. Science 195, 305–306 (1977)
    Article ADS CAS Google Scholar
  22. Schwille, P., Korlach, J. & Webb, W. W. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36, 176–182 (1999)
    Article CAS Google Scholar
  23. Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P.-F. Fluorescence correlation spectroscopy: diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 4029–4042 (2005)
    Article CAS Google Scholar
  24. Wenger, J. et al. Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys. J. 92, 913–919 (2007)
    Article ADS CAS Google Scholar
  25. Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006)
    Article ADS CAS Google Scholar
  26. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007)
    Article ADS CAS Google Scholar
  27. Magde, D., Elson, E. L. & Webb, W. W. Thermodynamic fluctuations in a reacting system - measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972)
    Article ADS CAS Google Scholar
  28. Osborn, M., Franke, W. W. & Weber, K. Visualization of a system of filaments 7–10 nm thick in cultured cells of an epithelioid line (PtK2) by immunofluorescence microscopy. Proc. Natl Acad. Sci. USA 74, 2490–2494 (1977)
    Article ADS CAS Google Scholar
  29. Martin, O. C. & Pagano, R. C. Internalization and sorting of a fluorescent analogue of glucosylceramide to the Golgi apparatus of human skin fibroblasts: utilization of endocytic and nonendocytic transport mechanisms. J. Cell Biol. 125, 769–781 (1994)
    Article CAS Google Scholar
  30. Schwarzmann, G., Hofmann, P., Pütz, U. & Albrecht, B. Demonstration of direct glycosylation of nondegradable glucosylceramide analogs in cultured cells. J. Biol. Chem. 270, 21271–21276 (1995)
    Article CAS Google Scholar
  31. Keller, J., Schönle, A. & Hell, S. W. Efficient fluorescence inhibition patterns for RESOLFT microscopy. Opt. Express 15, 3361–3371 (2007)
    Article ADS Google Scholar
  32. Willig, K. I. et al. Nanoscale resolution in GFP-based microscopy. Nature Methods 3, 721–723 (2006)
    Article CAS Google Scholar

Download references