Direct observation of the nanoscale dynamics of membrane lipids in a living cell (original) (raw)
References
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature387, 569–572 (1997) ArticleADSCAS Google Scholar
Brown, D. A. & London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem.275, 17221–17224 (2000) ArticleCAS Google Scholar
Fielding, C. J. Lipid Rafts and Caveolae (Wiley-VCH, 2006) Book Google Scholar
Jacobson, K., Mouritsen, O. G. & Anderson, G. W. Lipid rafts: at a crossroad between cell biology and physics. Nature Cell Biol.9, 7–14 (2007) ArticleADSCAS Google Scholar
Hanzal-Bayer, M. F. & Hancock, J. F. Lipid rafts and membrane traffic. FEBS Lett.581, 2098–2104 (2007) ArticleCAS Google Scholar
Lommerse, P. H. M., Spaink, H. P. & Schmidt, T. In vivo plasma membrane organization: results of biophysical approaches. Biochim. Biophys. Acta1664, 119–131 (2004) ArticleCAS Google Scholar
Hancock, J. F. Lipid rafts: contentious only from simplistic standpoints. Nature Rev. Mol. Cell Biol.7, 456–462 (2006) ArticleCAS Google Scholar
Shaw, A. S. Lipid rafts: now you see them, now you don’t. Nature Immunol.7, 1139–1142 (2006) ArticleCAS Google Scholar
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett.19, 780–782 (1994) ArticleADSCAS Google Scholar
Pike, L. J. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res.47, 1597–1598 (2006) ArticleCAS Google Scholar
Fujita, A. et al. Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol. Biol. Cell18, 2112–2122 (2007) ArticleCAS Google Scholar
Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett.56, 930–933 (1986) ArticleADSCAS Google Scholar
Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett.44, 651–653 (1984) ArticleADS Google Scholar
Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science296, 913–916 (2002) ArticleADSCAS Google Scholar
Saxton, M. J. & Jacobson, K. Single particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct.26, 373–399 (1997) ArticleCAS Google Scholar
Schütz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J.19, 892–901 (2000) Article Google Scholar
Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K. & Kusumi, A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol.157, 1071–1081 (2002) ArticleCAS Google Scholar
Yechiel, E. & Edidin, M. Micrometer-scale domains in fibroblast plasma membranes. J. Cell Biol.105, 755–760 (1987) ArticleCAS Google Scholar
Feder, T. J., Brust-Mascher, I., Slattery, J. P., Baird, B. A. & Webb, W. W. Constrainted diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys. J.70, 2767–2773 (1996) ArticleADSCAS Google Scholar
Fahey, P. F. et al. Lateral diffusion in planar lipid bilayers. Science195, 305–306 (1977) ArticleADSCAS Google Scholar
Schwille, P., Korlach, J. & Webb, W. W. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry36, 176–182 (1999) ArticleCAS Google Scholar
Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P.-F. Fluorescence correlation spectroscopy: diffusion laws to probe the submicron cell membrane organization. Biophys. J.89, 4029–4042 (2005) ArticleCAS Google Scholar
Wenger, J. et al. Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys. J.92, 913–919 (2007) ArticleADSCAS Google Scholar
Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature440, 935–939 (2006) ArticleADSCAS Google Scholar
Magde, D., Elson, E. L. & Webb, W. W. Thermodynamic fluctuations in a reacting system - measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett.29, 705–708 (1972) ArticleADSCAS Google Scholar
Osborn, M., Franke, W. W. & Weber, K. Visualization of a system of filaments 7–10 nm thick in cultured cells of an epithelioid line (PtK2) by immunofluorescence microscopy. Proc. Natl Acad. Sci. USA74, 2490–2494 (1977) ArticleADSCAS Google Scholar
Martin, O. C. & Pagano, R. C. Internalization and sorting of a fluorescent analogue of glucosylceramide to the Golgi apparatus of human skin fibroblasts: utilization of endocytic and nonendocytic transport mechanisms. J. Cell Biol.125, 769–781 (1994) ArticleCAS Google Scholar
Schwarzmann, G., Hofmann, P., Pütz, U. & Albrecht, B. Demonstration of direct glycosylation of nondegradable glucosylceramide analogs in cultured cells. J. Biol. Chem.270, 21271–21276 (1995) ArticleCAS Google Scholar
Keller, J., Schönle, A. & Hell, S. W. Efficient fluorescence inhibition patterns for RESOLFT microscopy. Opt. Express15, 3361–3371 (2007) ArticleADS Google Scholar
Willig, K. I. et al. Nanoscale resolution in GFP-based microscopy. Nature Methods3, 721–723 (2006) ArticleCAS Google Scholar