Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma (original) (raw)
Hayden, M. S. & Ghosh, S. Signaling to NF-κB. Genes Dev.18, 2195–2224 (2004) ArticleCAS Google Scholar
Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell118, 285–296 (2004) ArticleCAS Google Scholar
Hanson, J. L., Hawke, N. A., Kashatus, D. & Baldwin, A. S. The nuclear factor κB subunits RelA/p65 and c-Rel potentiate but are not required for Ras-induced cellular transformation. Cancer Res.64, 7248–7255 (2004) ArticleCAS Google Scholar
Luedde, T. et al. Deletion of NEMO/IKKγ in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell11, 119–132 (2007) ArticleCAS Google Scholar
Maeda, S., Kamata, H., Luo, J. L., Leffert, H. & Karin, M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell121, 977–990 (2005) ArticleCAS Google Scholar
Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature431, 461–466 (2004) ArticleADSCAS Google Scholar
Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N. Engl. J. Med.359, 1367–1380 (2008) ArticleCAS Google Scholar
Finco, T. S. et al. Oncogenic Ha-Ras-induced signaling activates NF-κB transcriptional activity, which is required for cellular transformation. J. Biol. Chem.272, 24113–24116 (1997) ArticleCAS Google Scholar
Huang, W. C., Ju, T. K., Hung, M. C. & Chen, C. C. Phosphorylation of CBP by IKKα promotes cell growth by switching the binding preference of CBP from p53 to NF-κB. Mol. Cell26, 75–87 (2007) Article Google Scholar
Kawauchi, K., Araki, K., Tobiume, K. & Tanaka, N. p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nature Cell Biol.10, 611–618 (2008) ArticleCAS Google Scholar
Kawauchi, K., Araki, K., Tobiume, K. & Tanaka, N. Loss of p53 enhances catalytic activity of IKKβ through O-linked β-_N_-acetyl glucosamine modification. Proc. Natl Acad. Sci. USA106, 3431–3436 (2009) ArticleADSCAS Google Scholar
Ravi, R. et al. p53-mediated repression of nuclear factor-κB RelA via the transcriptional integrator p300. Cancer Res.58, 4531–4536 (1998) CASPubMed Google Scholar
Wadgaonkar, R. et al. CREB-binding protein is a nuclear integrator of nuclear factor-κB and p53 signaling. J. Biol. Chem.274, 1879–1882 (1999) ArticleCAS Google Scholar
Webster, G. A. & Perkins, N. D. Transcriptional cross talk between NF-κB and p53. Mol. Cell. Biol.19, 3485–3495 (1999) ArticleCAS Google Scholar
Jackson, E. L. et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res.65, 10280–10288 (2005) ArticleCAS Google Scholar
Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev.15, 3243–3248 (2001) ArticleCAS Google Scholar
Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nature Genet.29, 418–425 (2001) ArticleCAS Google Scholar
Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature410, 1111–1116 (2001) ArticleADSCAS Google Scholar
Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo . Nature445, 661–665 (2007) ArticleCAS Google Scholar
Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature395, 297–300 (1998) ArticleADSCAS Google Scholar
Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell93, 1231–1240 (1998) ArticleCAS Google Scholar
Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl Acad. Sci. USA101, 10380–10385 (2004) ArticleADSCAS Google Scholar
Perl, A.-K. T., Tichelaar, J. W. & Whitsett, J. A. Conditional gene expression in the respiratory epithelium of the mouse. Transgenic Res.11, 21–29 (2002) ArticleCAS Google Scholar
Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature446, 557–561 (2007) ArticleADSCAS Google Scholar
Stathopoulos, G. T. et al. Epithelial NF-κB activation promotes urethane-induced lung carcinogenesis. Proc. Natl Acad. Sci. USA104, 18514–18519 (2007) ArticleADSCAS Google Scholar
Fong, C. H. et al. An antiinflammatory role for IKKβ through the inhibition of “classical” macrophage activation. J. Exp. Med.205, 1269–1276 (2008) ArticleCAS Google Scholar
Hagemann, T. et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J. Exp. Med.205, 1261–1268 (2008) ArticleCAS Google Scholar
Pikarsky, E. & Ben-Neriah, Y. NF-κB inhibition: a double-edged sword in cancer? Eur. J. Cancer42, 779–784 (2006) ArticleCAS Google Scholar
DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nature Protocols4, 1064–1072 (2009) ArticleCAS Google Scholar
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C T method. Nature Protocols3, 1101–1108 (2008) ArticleCAS Google Scholar