HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer (original) (raw)

References

  1. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956)
    Article ADS CAS Google Scholar
  2. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008)
    Article ADS CAS Google Scholar
  3. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009)
    Article ADS CAS Google Scholar
  4. Wang, T., Marquardt, C. & Foker, J. Aerobic glycolysis during lymphocyte proliferation. Nature 261, 702–705 (1976)
    Article ADS CAS Google Scholar
  5. Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. & Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008)
    Article ADS CAS Google Scholar
  6. Takenaka, M. et al. Alternative splicing of the pyruvate kinase M gene in a minigene system. Eur. J. Biochem. 235, 366–371 (1996)
    Article CAS Google Scholar
  7. Kashima, T., Rao, N., David, C. J. & Manley, J. L. hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Hum. Mol. Genet. 16, 3149–3159 (2007)
    Article CAS Google Scholar
  8. Del Gatto-Konczak, F., Olive, M., Gesnel, M. C. & Breathnach, R. hnRNP A1 recruited to an exon in vivo can function as an exon splicing silencer. Mol. Cell. Biol. 19, 251–260 (1999)
    Article CAS Google Scholar
  9. Burd, C. G. & Dreyfuss, G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J. 13, 1197–1204 (1994)
    Article CAS Google Scholar
  10. Spellman, R. & Smith, C. W. Novel modes of splicing repression by PTB. Trends Biochem. Sci. 31, 73–76 (2006)
    Article CAS Google Scholar
  11. Sauliere, J., Sureau, A., Expert-Bezancon, A. & Marie, J. The polypyrimidine tract binding protein (PTB) represses splicing of exon 6B from the β-tropomyosin pre-mRNA by directly interfering with the binding of the U2AF65 subunit. Mol. Cell. Biol. 26, 8755–8769 (2006)
    Article CAS Google Scholar
  12. Pomeranz Krummel, D. A., Oubridge, C., Leung, A. K., Li, J. & Nagai, K. Crystal structure of human spliceosomal U1 snRNP at 5.5 Å resolution. Nature 458, 475–480 (2009)
    Article ADS CAS Google Scholar
  13. Spellman, R., Llorian, M. & Smith, C. W. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol. Cell 27, 420–434 (2007)
    Article CAS Google Scholar
  14. Harada, Y., Nakamura, M. & Asano, A. Temporally distinctive changes of alternative splicing patterns during myogenic differentiation of C2C12 cells. J. Biochem. 118, 780–790 (1995)
    Article CAS Google Scholar
  15. Boutz, P. L., Chawla, G., Stoilov, P. & Black, D. L. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 21, 71–84 (2007)
    Article CAS Google Scholar
  16. Zheng, H. et al. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455, 1129–1133 (2008)
    Article ADS CAS Google Scholar
  17. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007)
    Article ADS CAS Google Scholar
  18. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008)
    Article CAS Google Scholar
  19. Shiio, Y. et al. Quantitative proteomic analysis of Myc oncoprotein function. EMBO J. 21, 5088–5096 (2002)
    Article CAS Google Scholar
  20. Schlosser, I. et al. Dissection of transcriptional programmes in response to serum and c-Myc in a human B-cell line. Oncogene 24, 520–524 (2005)
    Article CAS Google Scholar
  21. Eilers, M. & Eisenman, R. N. Myc’s broad reach. Genes Dev. 22, 2755–2766 (2008)
    Article CAS Google Scholar
  22. Wu, K. J., Mattioli, M., Morse, H. C. & Dalla-Favera, R. c-MYC activates protein kinase A (PKA) by direct transcriptional activation of the PKA catalytic subunit beta (_PKA-C_β) gene. Oncogene 21, 7872–7882 (2002)
    Article CAS Google Scholar
  23. Giacinti, C. & Giordano, A. RB and cell cycle progression. Oncogene 25, 5220–5227 (2006)
    Article CAS Google Scholar
  24. Martinez-Contreras, R. et al. Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol. 4, e21 (2006)
    Article Google Scholar
  25. Biamonti, G. et al. Human hnRNP protein A1 gene expression. Structural and functional characterization of the promoter. J. Mol. Biol. 230, 77–89 (1993)
    Article CAS Google Scholar
  26. Zerbe, L. K. et al. Relative amounts of antagonistic splicing factors, hnRNP A1 and ASF/SF2, change during neoplastic lung growth: implications for pre-mRNA processing. Mol. Carcinog. 41, 187–196 (2004)
    Article CAS Google Scholar
  27. He, X. et al. Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro . Oncogene 26, 4961–4968 (2007)
    Article CAS Google Scholar
  28. Hanamura, A., Caceres, J. F., Mayeda, A., Franza, B. R. & Krainer, A. R. Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors. RNA 4, 430–444 (1998)
    CAS PubMed PubMed Central Google Scholar
  29. Zhou, J. et al. Differential expression of the early lung cancer detection marker, heterogeneous nuclear ribonucleoprotein-A2/B1 (hnRNP-A2/B1) in normal breast and neoplastic breast cancer. Breast Cancer Res. Treat. 66, 217–224 (2001)
    Article CAS Google Scholar
  30. Jin, W., McCutcheon, I. E., Fuller, G. N., Huang, E. S. & Cote, G. J. Fibroblast growth factor receptor-1 α-exon exclusion and polypyrimidine tract-binding protein in glioblastoma multiforme tumors. Cancer Res. 60, 1221–1224 (2000)
    CAS PubMed Google Scholar
  31. Krainer, A. R., Maniatis, T., Ruskin, B. & Green, M. R. Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro . Cell 36, 993–1005 (1984)
    Article CAS Google Scholar

Download references