- Folkman, J. & Haudenschild, C. Angiogenesis in vitro . Nature 288, 551–556 (1980)
Article ADS CAS PubMed Google Scholar
- Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989)
ADS CAS PubMed Google Scholar
- Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005)
Article ADS CAS PubMed Google Scholar
- Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nature Rev. Mol. Cell Biol. 8, 464–478 (2007)
Article CAS Google Scholar
- Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005)
Article ADS CAS PubMed Google Scholar
- Folkman, J. Angiogenesis. Annu. Rev. Med. 57, 1–18 (2006)
Article CAS PubMed Google Scholar
- Majesky, M. W. Development of coronary vessels. Curr. Top. Dev. Biol. 62, 225–259 (2004)
Article CAS PubMed Google Scholar
- Lavine, K. J. & Ornitz, D. M. Shared circuitry: developmental signaling cascades regulate both embryonic and adult coronary vasculature. Circ. Res. 104, 159–169 (2009)
Article CAS PubMed PubMed Central Google Scholar
- Smart, N., Dube, K. N. & Riley, P. R. Coronary vessel development and insight towards neovascular therapy. Int. J. Exp. Pathol. 90, 262–283 (2009)
Article CAS PubMed PubMed Central Google Scholar
- World Health Organization. The Global Burden Of Disease: 2004 Update 〈http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/index.html〉.
- Lewis, F. T. The question of sinusoids. Anat. Anz. 25, 261–279 (1904)
Google Scholar
- Grant, R. T. Development of the cardiac coronary vessels in the rabbit. Heart 13, 261–271 (1923)
Google Scholar
- Bennett, H. S. The development of the blood supply to the heart in the embryo pig. Am. J. Anat. 60, 27–53 (1936)
Article Google Scholar
- Hutchins, G. M., Kessler-Hanna, A. & Moore, G. W. Development of the coronary arteries in the embryonic human heart. Circulation 77, 1250–1257 (1988)
Article CAS PubMed Google Scholar
- Mikawa, T. & Gourdie, R. G. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 174, 221–232 (1996)
Article CAS PubMed Google Scholar
- Männer, J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat. Rec. 255, 212–226 (1999)
Article PubMed Google Scholar
- Pérez-Pomares, J. M. et al. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 46, 1005–1013 (2002)
PubMed Google Scholar
- Kirby, M. L. Cardiac Development (Oxford Univ. Press, 2007)
Google Scholar
- Poelmann, R. E., Gittenberger-de Groot, A. C., Mentink, M. M., Bokenkamp, R. & Hogers, B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ. Res. 73, 559–568 (1993)
Article CAS PubMed Google Scholar
- Merki, E. et al. Epicardial retinoid X receptor α is required for myocardial growth and coronary artery formation. Proc. Natl Acad. Sci. USA 102, 18455–18460 (2005)
Article ADS CAS PubMed PubMed Central Google Scholar
- Wilm, B., Ipenberg, A., Hastie, N. D., Burch, J. B. & Bader, D. M. The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132, 5317–5328 (2005)
Article CAS PubMed Google Scholar
- Cai, C. L. et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454, 104–108 (2008)
Article ADS CAS PubMed PubMed Central Google Scholar
- Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008)
Article ADS CAS PubMed PubMed Central Google Scholar
- Sheikh, A. Y. et al. In vivo genetic profiling and cellular localization of apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. Am. J. Physiol. Heart Circ. Physiol. 294, H88–H98 (2008)
Article CAS PubMed Google Scholar
- Kattan, J., Dettman, R. W. & Bristow, J. Formation and remodeling of the coronary vascular bed in the embryonic avian heart. Dev. Dyn. 230, 34–43 (2004)
Article PubMed Google Scholar
- Lavine, K. J. et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 20, 1651–1666 (2006)
Article CAS PubMed PubMed Central Google Scholar
- Hiruma, T. & Hirakow, R. Epicardial formation in embryonic chick heart: computer-aided reconstruction, scanning, and transmission electron microscopic studies. Am. J. Anat. 184, 129–138 (1989)
Article CAS PubMed Google Scholar
- Hellström, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007)
Article ADS PubMed Google Scholar
- Kidoya, H. et al. Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J. 27, 522–534 (2008)
Article CAS PubMed PubMed Central Google Scholar
- Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008)
Article ADS CAS PubMed Google Scholar
- Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA 104, 3225–3230 (2007)
Article ADS CAS PubMed PubMed Central Google Scholar
- Drake, C. J. & Fleming, P. A. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 95, 1671–1679 (2000)
CAS PubMed Google Scholar
- Monvoisin, A. et al. VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev. Dyn. 235, 3413–3422 (2006)
Article CAS PubMed Google Scholar
- Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007)
Article ADS CAS PubMed Google Scholar
- Lavine, K. J., Long, F., Choi, K., Smith, C. & Ornitz, D. M. Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development 135, 3161–3171 (2008)
Article CAS PubMed Google Scholar
- Swift, M. R. & Weinstein, B. M. Arterial-venous specification during development. Circ. Res. 104, 576–588 (2009)
Article CAS PubMed Google Scholar
- le Noble, F. et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131, 361–375 (2004)
Article CAS PubMed Google Scholar
- Moyon, D., Pardanaud, L., Yuan, L., Breant, C. & Eichmann, A. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128, 3359–3370 (2001)
CAS PubMed Google Scholar
- Othman-Hassan, K. et al. Arterial identity of endothelial cells is controlled by local cues. Dev. Biol. 237, 398–409 (2001)
Article CAS PubMed Google Scholar
- Kudo, F. A. et al. Venous identity is lost but arterial identity is not gained during vein graft adaptation. Arterioscler. Thromb. Vasc. Biol. 27, 1562–1571 (2007)
Article CAS PubMed Google Scholar
- Goldman, S. et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J. Am. Coll. Cardiol. 44, 2149–2156 (2004)
Article PubMed Google Scholar
- Sabik, J. F., Lytle, B. W., Blackstone, E. H., Houghtaling, P. L. & Cosgrove, D. M. Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann. Thorac. Surg. 79, 544–551,discussion 544–551 (2005)
Article PubMed Google Scholar
- Metzger, R. J., Klein, O. D., Martin, G. R. & Krasnow, M. A. The branching programme of mouse lung development. Nature 453, 745–750 (2008)
Article ADS CAS PubMed PubMed Central Google Scholar
- Hayashi, S. & McMahon, A. P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002)
Article CAS PubMed Google Scholar
- Zovein, A. C. et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625–636 (2008)
Article CAS PubMed PubMed Central Google Scholar