A ribosome-associating factor chaperones tail-anchored membrane proteins (original) (raw)

References

  1. Rabu, C., Schmid, V., Schwappach, B. & High, S. Biogenesis of tail-anchored proteins: the beginning for the end? J. Cell Sci. 122, 3605–3612 (2009)
    Article CAS Google Scholar
  2. Stefanovic, S. & Hegde, R. S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128, 1147–1159 (2007)
    Article CAS Google Scholar
  3. Schuldiner, M. et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645 (2008)
    Article CAS Google Scholar
  4. Favaloro, V., Spasic, M., Schwappach, B. & Dobberstein, B. Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins. J. Cell Sci. 121, 1832–1840 (2008)
    Article CAS Google Scholar
  5. Jonikas, M. C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009)
    Article ADS CAS Google Scholar
  6. Copic, A. et al. Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modification and quality control. Genetics 182, 757–769 (2009)
    Article CAS Google Scholar
  7. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010)
    Article ADS CAS Google Scholar
  8. Chang, Y. W. et al. Crystal structure of Get4–Get5 complex and its interactions with Sgt2, Get3, and Ydj1. J. Biol. Chem. 285, 9962–9970 (2010)
    Article CAS Google Scholar
  9. Bozkurt, G. et al. The structure of Get4 reveals an α-solenoid fold adapted for multiple interactions in tail-anchored protein biogenesis. FEBS Lett. 584, 1509–1514 (2010)
    Article CAS Google Scholar
  10. Chartron, J. W., Suloway, C. J. M., Zaslaver, M. & Clemons, W. M., Jr Structural characterization of the Get4/5 complex and its interaction with Get3. Proc. Natl Acad. Sci. USA 107, 12127–12132 (2010)
    Article ADS CAS Google Scholar
  11. Leznicki, P., Clancy, A., Schwappach, B. & High, S. Bat3 promotes the membrane integration of tail-anchored proteins. J. Cell Sci. 123, 2170–2178 (2010)
    Article CAS Google Scholar
  12. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001)
    Article ADS CAS Google Scholar
  13. Krogan, N. J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006)
    Article ADS CAS Google Scholar
  14. Berndt, U., Oellerer, S., Zhang, Y., Johnson, A. E. & Rospert, S. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl Acad. Sci. USA 106, 1398–1403 (2009)
    Article ADS CAS Google Scholar
  15. Lodish, H. F. & Jacobsen, M. Regulation of hemoglobin synthesis: equal rates of translation and termination of α- and β-globin chains. J. Biol. Chem. 247, 3622–3629 (1972)
    CAS PubMed Google Scholar
  16. Wolin, S. L. & Walter, P. Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate. J. Cell Biol. 109, 2617–2622 (1989)
    Article CAS Google Scholar
  17. Cao, J. & Geballe, A. P. Coding sequence-dependent ribosomal arrest at termination of translation. Mol. Cell. Biol. 16, 603–608 (1996)
    Article CAS Google Scholar
  18. Mateja, A. et al. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461, 361–366 (2009)
    Article ADS CAS Google Scholar
  19. Bozkurt, G. et al. Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc. Natl Acad. Sci. USA 106, 21131–21136 (2009)
    Article ADS CAS Google Scholar
  20. Suloway, C. J., Chartron, J. W., Zaslaver, M. & Clemons, W. M., Jr Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc. Natl Acad. Sci. USA 106, 14849–14854 (2009)
    Article ADS CAS Google Scholar
  21. Yamagata, A. et al. Structural insight into the membrane insertion of tail-anchored proteins by Get3. Genes Cells 15, 29–41 (2010)
    Article CAS Google Scholar
  22. Hu, J., Li, J., Qian, X., Denic, V. & Sha, B. The crystal structures of yeast Get3 suggest a mechanism for tail-anchored protein membrane insertion. PLoS ONE 4, e8061 (2009)
    Article ADS Google Scholar
  23. Desmots, F., Russell, H. R., Lee, Y., Boyd, K. & McKinnon, P. J. The Reaper-binding protein Scythe modulates apoptosis and proliferation during mammalian development. Mol. Cell. Biol. 25, 10329–10337 (2005)
    Article CAS Google Scholar
  24. Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004)
    Article ADS CAS Google Scholar
  25. Wang, S., Sakai, H. & Wiedmann, M. NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. J. Cell Biol. 130, 519–528 (1995)
    Article CAS Google Scholar
  26. Gautschi, M. et al. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc. Natl Acad. Sci. USA 98, 3762–3767 (2001)
    Article ADS CAS Google Scholar
  27. Kramer, G., Boehringer, D., Ban, N. & Bukau, B. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nature Struct. Mol. Biol. 16, 589–597 (2009)
    Article CAS Google Scholar
  28. Hobden, A. N. & Cundliffe, E. The mode of action of alpha sarcin and a novel assay of the puromycin reaction. Biochem. J. 170, 57–61 (1978)
    Article CAS Google Scholar
  29. High, S., Gorlich, D., Wiedmann, M., Rapoport, T. A. & Dobberstein, B. The identification of proteins in the proximity of signal-anchor sequences during their targeting to and insertion into the membrane of the ER. J. Cell Biol. 113, 35–44 (1991)
    Article CAS Google Scholar
  30. Fons, R. D., Bogert, B. A. & Hegde, R. S. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J. Cell Biol. 160, 529–539 (2003)
    Article CAS Google Scholar

Download references