Genetic dissection of an amygdala microcircuit that gates conditioned fear (original) (raw)

References

  1. Davis, M., Walker, D. L. & Myers, K. M. Role of the amygdala in fear extinction measured with potentiated startle. Ann. NY Acad. Sci. 985, 218–232 (2003)
    Article CAS ADS PubMed Google Scholar
  2. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000)
    Article CAS PubMed Google Scholar
  3. Paré, D., Quirk, G. J. & LeDoux, J. E. New vistas on amygdala networks in conditioned fear. J. Neurophysiol. 92, 1–9 (2004)
    Article PubMed Google Scholar
  4. Pitkänen, A., Savander, V. & LeDoux, J. E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 20, 517–523 (1997)
    Article PubMed Google Scholar
  5. Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nature Rev. Neurosci. 5, 844–852 (2004)
    Article CAS Google Scholar
  6. Medina, J. F., Repa, J. C., Mauk, M. D. & LeDoux, J. E. Parallels between cerebellum- and amygdala-dependent conditioning. Nature Rev. Neurosci. 3, 122–131 (2002)
    Article CAS Google Scholar
  7. Cassell, M. D., Freedman, L. J. & Shi, C. The intrinsic organization of the central extended amygdala. Ann. NY Acad. Sci. 877, 217–241 (1999)
    Article CAS ADS PubMed Google Scholar
  8. Cassell, M. D., Gray, T. S. & Kiss, J. Z. Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. J. Comp. Neurol. 246, 478–499 (1986)
    Article CAS PubMed Google Scholar
  9. Day, H. E. W., Curran, E. J., Watson, S. J. & Akil, H. Distinct neurochemical populations in the rat central nucleus of the amygdala and bed nucleus of the stria terminalis: evidence for their selective activation by interleukin-1β. J. Comp. Neurol. 413, 113–128 (1999)
    Article CAS PubMed Google Scholar
  10. Marchant, N. J., Densmore, V. S. & Osborne, P. B. Coexpression of prodynorphin and corticotrophin-releasing hormone in the rat central amygdala: evidence of two distinct endogenous opioid systems in the lateral division. J. Comp. Neurol. 504, 702–715 (2007)
    Article CAS PubMed Google Scholar
  11. Ehrlich, I. et al. Amygdala inhibitory circuits and the control of fear memory. Neuron 62, 757–771 (2009)
    Article CAS PubMed Google Scholar
  12. Huber, D., Veinante, P. & Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308, 245–248 (2005)
    Article CAS ADS PubMed Google Scholar
  13. Wilensky, A. E., Schafe, G. E., Kristensen, M. P. & LeDoux, J. E. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26, 12387–12396 (2006)
    Article CAS PubMed PubMed Central Google Scholar
  14. Lerchner, W. et al. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl− channel. Neuron 54, 35–49 (2007)
    Article CAS PubMed Google Scholar
  15. Slimko, E. M., McKinney, S., Anderson, D. J., Davidson, N. & Lester, H. A. Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels. J. Neurosci. 22, 7373–7379 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  16. Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature doi:10.1038/nature09559 (this issue).
  17. Day, H. E., Nebel, S., Sasse, S. & Campeau, S. Inhibition of the central extended amygdala by loud noise and restraint stress. Eur. J. Neurosci. 21, 441–454 (2005)
    Article PubMed PubMed Central Google Scholar
  18. Zirlinger, M. & Anderson, D. Molecular dissection of the amygdala and its relevance to autism. Genes Brain Behav. 2, 282–294 (2003)
    Article CAS PubMed Google Scholar
  19. Zirlinger, M., Kreiman, G. & Anderson, D. J. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc. Natl Acad. Sci. USA 98, 5270–5275 (2001)
    Article CAS ADS PubMed PubMed Central Google Scholar
  20. Callaway, E. M. A molecular and genetic arsenal for systems neuroscience. Trends Neurosci. 28, 196–201 (2005)
    Article CAS PubMed Google Scholar
  21. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008)
    Article CAS PubMed PubMed Central Google Scholar
  22. Zhang, F., Aravanis, A. M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nature Rev. Neurosci. 8, 577–581 (2007)
    Article CAS Google Scholar
  23. Chieng, B. C., Christie, M. J. & Osborne, P. B. Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity. J. Comp. Neurol. 497, 910–927 (2006)
    Article CAS PubMed Google Scholar
  24. Schiess, M. C., Callahan, P. M. & Zheng, H. Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro . J. Neurosci. Res. 58, 663–673 (1999)
    Article CAS PubMed Google Scholar
  25. Lopez de Armentia, M. & Sah, P. Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala. J. Neurophysiol. 92, 1285–1294 (2004)
    Article PubMed Google Scholar
  26. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003)
    Article CAS ADS PubMed Google Scholar
  27. Li, P., Slimko, E. M. & Lester, H. A. Selective elimination of glutamate activation and introduction of fluorescent proteins into a Caenorhabditis elegans chloride channel. FEBS Lett. 528, 77–82 (2002)
    Article CAS PubMed Google Scholar
  28. Wagstaff, M. J. et al. Gene transfer using a disabled herpes virus vector containing the EMCV IRES allows multiple gene expression in vitro and in vivo . Gene Ther. 5, 1566–1570 (1998)
    Article CAS PubMed Google Scholar
  29. Veinante, P. & Freund-Mercier, M. J. Branching patterns of central amygdaloid nucleus afferents in the rat: single axon reconstructions. Ann. NY Acad. Sci. 985, 552–553 (2003)
    Article ADS Google Scholar
  30. Sun, N., Yi, H. & Cassell, M. D. Evidence for a GABAergic interface between cortical afferents and brainstem projection neurons in the rat central extended amygdala. J. Comp. Neurol. 340, 43–64 (1994)
    Article CAS PubMed Google Scholar
  31. Gautron, L., Lazarus, M., Scott, M. M., Saper, C. B. & Elmquist, J. K. Identifying the efferent projections of leptin-responsive neurons in the dorsomedial hypothalamus using a novel conditional tracing approach. J. Comp. Neurol. 518, 2090–2108 (2010)
    Article PubMed PubMed Central Google Scholar
  32. De Oca, B. M., De Cola, J. P., Maren, S. & Fanselow, M. S. Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J. Neurosci. 18, 3426–3432 (1998)
    Article CAS PubMed PubMed Central Google Scholar
  33. Kim, J. J., Rison, R. A. & Fanselow, M. S. Effects of amygdala, hippocampus, and periaqueductal grady lesions on short- and long-term contextual fear. Behav. Neurosci. 107, 1093–1098 (1993)
    Article CAS PubMed Google Scholar
  34. LeDoux, J. E., Iwata, J., Cicchetti, P. & Reis, D. J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529 (1988)
    Article CAS PubMed PubMed Central Google Scholar
  35. Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010)
    Article CAS ADS PubMed PubMed Central Google Scholar
  36. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007)
    Article CAS ADS PubMed Google Scholar
  37. Cardin, J. A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols 5, 247–254 (2010)
    Article CAS PubMed PubMed Central Google Scholar
  38. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neurosci. 10, 663–668 (2007)
    Article CAS PubMed Google Scholar
  39. Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007)
    Article CAS PubMed PubMed Central Google Scholar
  40. Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods 4, 47–49 (2007)
    Article CAS PubMed Google Scholar
  41. Slimko, E. M. & Lester, H. A. Codon optimization of Caenorhabditis elegans GluCl ion channel genes for mammalian cells dramatically improves expression levels. J. Neurosci. Methods 124, 75–81 (2003)
    Article CAS PubMed Google Scholar
  42. Edwards, A. L. Experimental Design in Psychological Research 4th edn, 249–251 (Holt, Reinhard & Winston, 1972)
    Google Scholar
  43. Wickens, J. R., Arbuthnott, G. W. & Shindou, T. Simulation of GABA function in the basal ganglia: computational models of GABAergic mechanisms in basal ganglia function. Prog. Brain Res. 160, 313–329 (2007)
    Article CAS PubMed Google Scholar
  44. Gozzi, A. et al. A neural switch for active and passive fear. Neuron 67, 656–666 (2010)
    Article CAS PubMed Google Scholar
  45. Tsetsenis, T., Ma, X. H., Lo Iacono, L., Beck, S. G. & Gross, C. Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dentate gyrus. Nature Neurosci. 10, 896–902 (2007)
    Article CAS PubMed Google Scholar
  46. Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nature Neurosci. 10, 1116–1124 (2007)
    Article CAS PubMed Google Scholar
  47. Gong, S., Yang, X. W., Li, C. & Heintz, N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kγ origin of replication. Genome Res. 12, 1992–1998 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  48. Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008)
    Article CAS PubMed PubMed Central Google Scholar
  49. Seidler, B. et al. A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors. Proc. Natl Acad. Sci. USA 105, 10137–10142 (2008)
    Article CAS ADS PubMed PubMed Central Google Scholar
  50. Furler, S., Paterna, J. C., Weibel, M. & Bueler, H. Recombinant AAV vectors containing the foot and mouth disease virus 2A sequence confer efficient bicistronic gene expression in cultured cells and rat substantia nigra neurons. Gene Ther. 8, 864–873 (2001)
    Article CAS PubMed Google Scholar
  51. Szymczak, A. L. et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nature Biotechnol. 22, 589–594 (2004)
    Article CAS Google Scholar
  52. Etessami, R. et al. Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J. Gen. Virol. 81, 2147–2153 (2000)
    Article CAS PubMed Google Scholar
  53. Herry, C. et al. Switching on and off fear by distinct neuronal circuits. Nature 454, 600–606 (2008)
    Article CAS ADS PubMed Google Scholar
  54. Nicolelis, M. A. et al. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl Acad. Sci. USA 100, 11041–11046 (2003)
    Article CAS ADS PubMed PubMed Central Google Scholar

Download references