Genetic dissection of an amygdala microcircuit that gates conditioned fear (original) (raw)
References
Davis, M., Walker, D. L. & Myers, K. M. Role of the amygdala in fear extinction measured with potentiated startle. Ann. NY Acad. Sci.985, 218–232 (2003) ArticleCASADSPubMed Google Scholar
Paré, D., Quirk, G. J. & LeDoux, J. E. New vistas on amygdala networks in conditioned fear. J. Neurophysiol.92, 1–9 (2004) ArticlePubMed Google Scholar
Pitkänen, A., Savander, V. & LeDoux, J. E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci.20, 517–523 (1997) ArticlePubMed Google Scholar
Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nature Rev. Neurosci.5, 844–852 (2004) ArticleCAS Google Scholar
Medina, J. F., Repa, J. C., Mauk, M. D. & LeDoux, J. E. Parallels between cerebellum- and amygdala-dependent conditioning. Nature Rev. Neurosci.3, 122–131 (2002) ArticleCAS Google Scholar
Cassell, M. D., Freedman, L. J. & Shi, C. The intrinsic organization of the central extended amygdala. Ann. NY Acad. Sci.877, 217–241 (1999) ArticleCASADSPubMed Google Scholar
Cassell, M. D., Gray, T. S. & Kiss, J. Z. Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. J. Comp. Neurol.246, 478–499 (1986) ArticleCASPubMed Google Scholar
Day, H. E. W., Curran, E. J., Watson, S. J. & Akil, H. Distinct neurochemical populations in the rat central nucleus of the amygdala and bed nucleus of the stria terminalis: evidence for their selective activation by interleukin-1β. J. Comp. Neurol.413, 113–128 (1999) ArticleCASPubMed Google Scholar
Marchant, N. J., Densmore, V. S. & Osborne, P. B. Coexpression of prodynorphin and corticotrophin-releasing hormone in the rat central amygdala: evidence of two distinct endogenous opioid systems in the lateral division. J. Comp. Neurol.504, 702–715 (2007) ArticleCASPubMed Google Scholar
Ehrlich, I. et al. Amygdala inhibitory circuits and the control of fear memory. Neuron62, 757–771 (2009) ArticleCASPubMed Google Scholar
Huber, D., Veinante, P. & Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science308, 245–248 (2005) ArticleCASADSPubMed Google Scholar
Wilensky, A. E., Schafe, G. E., Kristensen, M. P. & LeDoux, J. E. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci.26, 12387–12396 (2006) ArticleCASPubMedPubMed Central Google Scholar
Lerchner, W. et al. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl− channel. Neuron54, 35–49 (2007) ArticleCASPubMed Google Scholar
Slimko, E. M., McKinney, S., Anderson, D. J., Davidson, N. & Lester, H. A. Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels. J. Neurosci.22, 7373–7379 (2002) ArticleCASPubMedPubMed Central Google Scholar
Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature doi:10.1038/nature09559 (this issue).
Day, H. E., Nebel, S., Sasse, S. & Campeau, S. Inhibition of the central extended amygdala by loud noise and restraint stress. Eur. J. Neurosci.21, 441–454 (2005) ArticlePubMedPubMed Central Google Scholar
Zirlinger, M. & Anderson, D. Molecular dissection of the amygdala and its relevance to autism. Genes Brain Behav.2, 282–294 (2003) ArticleCASPubMed Google Scholar
Zirlinger, M., Kreiman, G. & Anderson, D. J. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc. Natl Acad. Sci. USA98, 5270–5275 (2001) ArticleCASADSPubMedPubMed Central Google Scholar
Callaway, E. M. A molecular and genetic arsenal for systems neuroscience. Trends Neurosci.28, 196–201 (2005) ArticleCASPubMed Google Scholar
Zhang, F., Aravanis, A. M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nature Rev. Neurosci.8, 577–581 (2007) ArticleCAS Google Scholar
Chieng, B. C., Christie, M. J. & Osborne, P. B. Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity. J. Comp. Neurol.497, 910–927 (2006) ArticleCASPubMed Google Scholar
Schiess, M. C., Callahan, P. M. & Zheng, H. Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro . J. Neurosci. Res.58, 663–673 (1999) ArticleCASPubMed Google Scholar
Lopez de Armentia, M. & Sah, P. Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala. J. Neurophysiol.92, 1285–1294 (2004) ArticlePubMed Google Scholar
Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature425, 917–925 (2003) ArticleCASADSPubMed Google Scholar
Li, P., Slimko, E. M. & Lester, H. A. Selective elimination of glutamate activation and introduction of fluorescent proteins into a Caenorhabditis elegans chloride channel. FEBS Lett.528, 77–82 (2002) ArticleCASPubMed Google Scholar
Wagstaff, M. J. et al. Gene transfer using a disabled herpes virus vector containing the EMCV IRES allows multiple gene expression in vitro and in vivo . Gene Ther.5, 1566–1570 (1998) ArticleCASPubMed Google Scholar
Veinante, P. & Freund-Mercier, M. J. Branching patterns of central amygdaloid nucleus afferents in the rat: single axon reconstructions. Ann. NY Acad. Sci.985, 552–553 (2003) ArticleADS Google Scholar
Sun, N., Yi, H. & Cassell, M. D. Evidence for a GABAergic interface between cortical afferents and brainstem projection neurons in the rat central extended amygdala. J. Comp. Neurol.340, 43–64 (1994) ArticleCASPubMed Google Scholar
Gautron, L., Lazarus, M., Scott, M. M., Saper, C. B. & Elmquist, J. K. Identifying the efferent projections of leptin-responsive neurons in the dorsomedial hypothalamus using a novel conditional tracing approach. J. Comp. Neurol.518, 2090–2108 (2010) ArticlePubMedPubMed Central Google Scholar
De Oca, B. M., De Cola, J. P., Maren, S. & Fanselow, M. S. Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J. Neurosci.18, 3426–3432 (1998) ArticleCASPubMedPubMed Central Google Scholar
Kim, J. J., Rison, R. A. & Fanselow, M. S. Effects of amygdala, hippocampus, and periaqueductal grady lesions on short- and long-term contextual fear. Behav. Neurosci.107, 1093–1098 (1993) ArticleCASPubMed Google Scholar
LeDoux, J. E., Iwata, J., Cicchetti, P. & Reis, D. J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci.8, 2517–2529 (1988) ArticleCASPubMedPubMed Central Google Scholar
Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature446, 633–639 (2007) ArticleCASADSPubMed Google Scholar
Cardin, J. A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols5, 247–254 (2010) ArticleCASPubMedPubMed Central Google Scholar
Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neurosci.10, 663–668 (2007) ArticleCASPubMed Google Scholar
Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron53, 639–647 (2007) ArticleCASPubMedPubMed Central Google Scholar
Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods4, 47–49 (2007) ArticleCASPubMed Google Scholar
Slimko, E. M. & Lester, H. A. Codon optimization of Caenorhabditis elegans GluCl ion channel genes for mammalian cells dramatically improves expression levels. J. Neurosci. Methods124, 75–81 (2003) ArticleCASPubMed Google Scholar
Edwards, A. L. Experimental Design in Psychological Research 4th edn, 249–251 (Holt, Reinhard & Winston, 1972) Google Scholar
Wickens, J. R., Arbuthnott, G. W. & Shindou, T. Simulation of GABA function in the basal ganglia: computational models of GABAergic mechanisms in basal ganglia function. Prog. Brain Res.160, 313–329 (2007) ArticleCASPubMed Google Scholar
Tsetsenis, T., Ma, X. H., Lo Iacono, L., Beck, S. G. & Gross, C. Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dentate gyrus. Nature Neurosci.10, 896–902 (2007) ArticleCASPubMed Google Scholar
Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nature Neurosci.10, 1116–1124 (2007) ArticleCASPubMed Google Scholar
Gong, S., Yang, X. W., Li, C. & Heintz, N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kγ origin of replication. Genome Res.12, 1992–1998 (2002) ArticleCASPubMedPubMed Central Google Scholar
Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci.28, 7025–7030 (2008) ArticleCASPubMedPubMed Central Google Scholar
Seidler, B. et al. A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors. Proc. Natl Acad. Sci. USA105, 10137–10142 (2008) ArticleCASADSPubMedPubMed Central Google Scholar
Furler, S., Paterna, J. C., Weibel, M. & Bueler, H. Recombinant AAV vectors containing the foot and mouth disease virus 2A sequence confer efficient bicistronic gene expression in cultured cells and rat substantia nigra neurons. Gene Ther.8, 864–873 (2001) ArticleCASPubMed Google Scholar
Szymczak, A. L. et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nature Biotechnol.22, 589–594 (2004) ArticleCAS Google Scholar
Etessami, R. et al. Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J. Gen. Virol.81, 2147–2153 (2000) ArticleCASPubMed Google Scholar