Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography (original) (raw)
Her, Z., Kam, Y. W., Lin, R. T. & Ng, L. F. Chikungunya: a bending reality. Microbes Infect.11, 1165–1176 (2009) ArticlePubMed Google Scholar
Schwartz, O. & Albert, M. L. Biology and pathogenesis of chikungunya virus. Nature Rev. Microbiol.8, 491–500 (2010) ArticleCAS Google Scholar
Li, L., Jose, J., Xiang, Y., Kuhn, R. J. & Rossmann, M. G. Structural changes of envelope proteins during alphavirus fusion. Nature 10.1038/nature09546 (this issue)
Halstead, S. B. in Pediatric Infectious Diseases (eds Feigin, R. & Cherry, J.) 2178–2183 (Saunders, 2004) Google Scholar
Robinson, M. C. An epidemic of virus disease in southern province, Tanganyika territory, in 1952–1953 I. Clinical features. Trans. R. Soc. Trop. Med. Hyg.49, 28–32 (1955) ArticleCASPubMed Google Scholar
Johnson, F. Notes on Kimakonde. Bull. Sch. Orient. Studies2, 417–466 (1922) Article Google Scholar
Carey, D. E. Chikungunya and dengue: a case of mistaken identity? J. Hist. Med. Allied Sci.26, 243–262 (1971) ArticleCASPubMed Google Scholar
Schuffenecker, I. et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med.3, e263 (2006) ArticlePubMedPubMed Central Google Scholar
Tsetsarkin, K. A., Vanlandingham, D. L., McGee, C. E. & Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog.3, e201 (2007) ArticlePubMedPubMed Central Google Scholar
Vazeille, M. et al. Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, aedes albopictus . PLoS ONE2, e1168 (2007) ArticleADSPubMedPubMed Central Google Scholar
Akahata, W. et al. A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nature Med.16, 334–338 (2010) ArticleCASPubMed Google Scholar
Salminen, A. et al. Membrane fusion process of Semliki Forest virus. II. Cleavage-dependent reorganization of the spike protein complex controls virus entry. J. Cell Biol.116, 349–357 (1992) ArticleCASPubMed Google Scholar
Ziemiecki, A., Garoff, H. & Simons, K. Formation of the Semliki Forest virus membrane glycoprotein complexes in the infected cell. J. Gen. Virol.50, 111–123 (1980) ArticleCASPubMed Google Scholar
Wahlberg, J. M., Boere, W. A. & Garoff, H. The heterodimeric association between the membrane proteins of Semliki Forest virus changes its sensitivity to low pH during virus maturation. J. Virol.63, 4991–4997 (1989) CASPubMedPubMed Central Google Scholar
Kielian, M. & Helenius, A. pH-induced alterations in the fusogenic spike protein of Semliki Forest virus. J. Cell Biol.101, 2284–2291 (1985) ArticleCASPubMed Google Scholar
Wahlberg, J. M., Bron, R., Wilschut, J. & Garoff, H. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J. Virol.66, 7309–7318 (1992) CASPubMedPubMed Central Google Scholar
Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell105, 137–148 (2001) ArticleCASPubMed Google Scholar
Gibbons, D. L. et al. Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus. Nature427, 320–325 (2004) ArticleADSCASPubMed Google Scholar
Kielian, M. & Rey, F. A. Virus membrane-fusion proteins: more than one way to make a hairpin. Nature Rev. Microbiol.4, 67–76 (2006) ArticleCAS Google Scholar
Rey, F. A. et al. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature375, 291–298 (1995) ArticleADSCASPubMed Google Scholar
Lobigs, M., Zhao, H. X. & Garoff, H. Function of Semliki Forest virus E3 peptide in virus assembly: replacement of E3 with an artificial signal peptide abolishes spike heterodimerization and surface expression of E1. J. Virol.64, 4346–4355 (1990) CASPubMedPubMed Central Google Scholar
Tsetsarkin, K. A. et al. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PLoS ONE4, e6835 (2009) ArticleADSPubMedPubMed Central Google Scholar
Pierro, D. J., Powers, E. L. & Olson, K. E. Genetic determinants of Sindbis virus mosquito infection are associated with a highly conserved alphavirus and flavivirus envelope sequence. J. Virol.82, 2966–2974 (2008) ArticleCASPubMed Google Scholar
Meyer, W. J. & Johnston, R. E. Structural rearrangement of infecting Sindbis virions at the cell surface: mapping of newly accessible epitopes. J. Virol.67, 5117–5125 (1993) CASPubMedPubMed Central Google Scholar
Meyer, W. J. et al. Conformational alteration of Sindbis virion glycoproteins induced by heat, reducing agents, or low pH. J. Virol.66, 3504–3513 (1992) CASPubMedPubMed Central Google Scholar
Flynn, D. C., Meyer, W. J., Mackenzie, J. M., Jr & Johnston, R. E. A conformational change in Sindbis virus glycoproteins E1 and E2 is detected at the plasma membrane as a consequence of early virus-cell interaction. J. Virol.64, 3643–3653 (1990) CASPubMedPubMed Central Google Scholar
Wu, S. R. et al. The dynamic envelope of a fusion class II virus. Prefusion stages of Semliki Forest virus revealed by electron cryomicroscopy. J. Biol. Chem.282, 6752–6762 (2007) ArticleCASPubMed Google Scholar
Schuffenecker, I. et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med.3, e263 (2006) ArticlePubMedPubMed Central Google Scholar
Krey, T. et al. The disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of the molecule. PLoS Pathog.6, e1000762 (2010) ArticlePubMedPubMed Central Google Scholar
Evans, P. R. Scaling and assessment of data quality. Acta Crystallogr. D62, 72–82 (2005) ArticlePubMed Google Scholar
Collaborative Computational Project Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994) Article Google Scholar
Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D57, 1367–1372 (2001) ArticleCASPubMed Google Scholar
Roussel, A. et al. Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Structure14, 75–86 (2006) ArticleCASPubMed Google Scholar
Bricogne, G. et al. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D59, 2023–2030 (2003) ArticleCASPubMed Google Scholar
Abrahams, J. P. & Leslie, A. G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D52, 30–42 (1996) ArticleCASPubMed Google Scholar
Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D62, 1002–1011 (2006) ArticlePubMed Google Scholar
Cowtan, K. ‘dm’: an automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newsl. Protein Crystallogr.31, 34–38 (1994) Google Scholar
Bricogne, G. et al. BUSTER version 2.9. (Global Phasing, 2010)
Painter, J. & Merritt, E. A. A molecular viewer for the analysis of TLS rigid-body motion in macromolecules. Acta Crystallogr. D61, 465–471 (2005) ArticlePubMed Google Scholar
Mancini, E. J. et al. Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol. Cell5, 255–266 (2000) ArticleCASPubMed Google Scholar
Akahata, W. et al. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nature Med.16, 334–338 (2010) ArticleCASPubMed Google Scholar
Navaza, J. et al. On the fitting of model electron densities into EM reconstructions: a reciprocal-space formulation. Acta Crystallogr. D58, 1820–1825 (2002) ArticleCASPubMed Google Scholar