Sollner, T. H. Intracellular and viral membrane fusion: a uniting mechanism. Curr. Opin. Cell Biol.16, 429–435 (2004). ArticleCASPubMed Google Scholar
Earp, L. J., Delos, S. E., Park, H. E. & White, J. M. The many mechanisms of viral membrane fusion proteins. Curr. Topics Microbiol. Immunol.285, 25–66 (2005). CAS Google Scholar
Sieczkarski, S. B. & Whittaker, G. R. Viral entry. Curr. Topics Microbiol. Immunol.285, 1–23 (2005). CAS Google Scholar
Helenius, A., Kartenbeck, J., Simons, K. & Fries, E. On the entry of Semliki Forest virus into BHK-21 cells. J. Cell Biol.84, 404–420 (1980). ArticleCASPubMedPubMed Central Google Scholar
Marsh, M. & Bron, R. SFV infection in CHO cells: cell-type specific restrictions to productive virus entry at the cell surface. J. Cell Sci.110, 95–103 (1997). ArticleCASPubMed Google Scholar
Skehel, J. J. et al. Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc. Natl Acad. Sci. USA79, 968–972 (1982). ArticleCASPubMedPubMed Central Google Scholar
Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science272, 872–877 (1996). ArticleCASPubMed Google Scholar
Eckert, D. M. & Kim, P. S. Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem.70, 777–810 (2001). ArticleCASPubMed Google Scholar
Mothes, W., Boerger, A. L., Narayan, S., Cunningham, J. M. & Young, J. A. Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell103, 679–689 (2000). ArticleCASPubMed Google Scholar
Matsuyama, S., Delos, S. E. & White, J. M. Sequential roles of receptor binding and low pH in forming prehairpin and hairpin conformations of a retroviral envelope glycoprotein. J. Virol.78, 8201–8209 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P. & Cunningham, J. M. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science308, 1643–1645 (2005). ArticleCASPubMedPubMed Central Google Scholar
Carr, C. M. & Kim, P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell73, 823–832 (1993). ArticleCASPubMed Google Scholar
Skehel, J. J. & Wiley, D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem.69, 531–569 (2000). ArticleCASPubMed Google Scholar
Ruigrok, R. W. H. et al. Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. Virology155, 484–497 (1986). ArticleCASPubMed Google Scholar
Carr, C. M., Chaudhry, C. & Kim, P. S. Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc. Natl Acad. Sci. USA94, 14306–14313 (1997). ArticleCASPubMedPubMed Central Google Scholar
Chen, J. et al. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell95, 409–417 (1998). ArticleCASPubMed Google Scholar
Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature289, 366–378 (1981). First structure of a viral membrane-fusion protein. ArticleCASPubMed Google Scholar
Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature371, 37–43 (1994). First structure of the 'post-fusion' conformation of a viral membrane-fusion protein. ArticleCASPubMed Google Scholar
Melikyan, G. B. et al. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J. Cell Biol.151, 413–423 (2000). First demonstration that class I fusion is driven by hairpin formation. ArticleCASPubMedPubMed Central Google Scholar
Russell, C. J., Jardetzky, T. S. & Lamb, R. A. Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. EMBO J.20, 4024–4034 (2001). ArticleCASPubMedPubMed Central Google Scholar
Han, X., Bushweller, J. H., Cafiso, D. S. & Tamm, L. K. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nature Struct. Biol.8, 715–720 (2001). ArticleCASPubMed Google Scholar
Danieli, T., Pelletier, S. L., Henis, Y. I. & White, J. M. Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J. Cell Biol.133, 559–569 (1996). ArticleCASPubMed Google Scholar
Markovic, I., Leikina, E., Zhukovsky, M., Zimmerberg, J. & Chernomordik, L. V. Synchronized activation and refolding of influenza hemagglutinin in multimeric fusion machines. J. Cell Biol.155, 833–844 (2001). ArticleCASPubMedPubMed Central Google Scholar
Leikina, E. et al. Influenza hemagglutinins outside of the contact zone are necessary for fusion pore expansion. J. Biol. Chem.279, 26526–26532 (2004). ArticleCASPubMed Google Scholar
Moore, J. P. & Doms, R. W. The entry of entry inhibitors: a fusion of science and medicine. Proc. Natl Acad. Sci. USA100, 10598–10602 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wild, C., Greenwell, T. & Matthews, T. A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell–cell fusion. AIDS Res. Hum. Retroviruses9, 1051–1053 (1993). Report that T20, now in use as an antiretroviral drug, blocks HIV membrane-fusion activity. ArticleCASPubMed Google Scholar
Kilby, J. M. et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nature Med.4, 1302–1307 (1998). ArticleCASPubMed Google Scholar
Cianci, C. et al. Targeting a binding pocket within the trimer-of-hairpins: small-molecule inhibition of viral fusion. Proc. Natl Acad. Sci. USA101, 15046–15051 (2004). ArticleCASPubMedPubMed Central Google Scholar
Luo, G. et al. Molecular mechanism underlying the action of a novel fusion inhibitor of influenza A virus. J. Virol.71, 4062–4070 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hoffman, L. R., Kuntz, I. D. & White, J. M. Structure-based identification of an inducer of the low-pH conformational change in the influenza virus hemagglutinin: irreversible inhibition of infectivity. J. Virol.71, 8808–8820 (1997). ArticleCASPubMedPubMed Central Google Scholar
Schlesinger, S. & Schlesinger, M. J. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 895–916 (Lippincott, Williams and Wilkins, Philadelphia, 2001). Google Scholar
Lindenbach, B. D. & Rice, C. M. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 991–1041 (Lippincott, Williams and Wilkins, Philadelphia, 2001). Google Scholar
Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell105, 137–148 (2001). Prefusion structure of alphavirus E1 protein, showing unexpected similarity to flavivirus E protein, leading to concept of 'class II' membrane-fusion proteins. ArticleCASPubMed Google Scholar
Salminen, A., Wahlberg, J. M., Lobigs, M., Liljeström, P. & Garoff, H. Membrane fusion process of Semliki Forest virus II: cleavage-dependent reorganization of the spike protein complex controls virus entry. J. Cell Biol.116, 349–357 (1992). ArticleCASPubMed Google Scholar
Zhang, X., Fugere, M., Day, R. & Kielian, M. Furin processing and proteolytic activation of Semliki Forest virus. J. Virol.77, 2981–2989 (2003). ArticleCASPubMedPubMed Central Google Scholar
Stadler, K., Allison, S. L., Schalich, J. & Heinz, F. X. Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol.71, 8475–8481 (1997). ArticleCASPubMedPubMed Central Google Scholar
Wengler, G. Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J. Virol.63, 2521–2526 (1989). ArticleCASPubMedPubMed Central Google Scholar
Garoff, H., Sjoberg, M. & Cheng, R. H. Budding of alphaviruses. Virus Res.106, 103–116 (2004). ArticleCASPubMed Google Scholar
Mukhopadhyay, S., Kuhn, R. J. & Rossmann, M. G. A structural perspective of the flavivirus life cycle. Nature Rev. Microbiol.3, 13–22 (2005). ArticleCAS Google Scholar
Mancini, E. J., Clarke, M., Gowen, B. E., Rutten, T. & Fuller, S. D. Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki forest virus. Mol. Cell5, 255–266 (2000). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Structures of immature flavivirus particles. EMBO J.22, 2604–2613 (2003). First structures of immature flavivirus particles. ArticleCASPubMedPubMed Central Google Scholar
Kuhn, R. J. et al. Structure of Dengue virus: implications for flavivirus organization, maturation, and fusion. Cell108, 717–725 (2002). First description of mature flavivirus surface organization, showing the striking herringbone arrangement of fusion protein homodimers. ArticleCASPubMedPubMed Central Google Scholar
Zhang, W. et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nature Struct. Biol.10, 907–912 (2003). ArticleCASPubMed Google Scholar
Mukhopadhyay, S., Kim, B. S., Chipman, P. R., Rossmann, M. G. & Kuhn, R. J. Structure of West Nile virus. Science302, 248 (2003). ArticleCASPubMed Google Scholar
Roussel, A. et al. Crystal structure of the Semliki Forest virus envelope protein E1 in its monomeric conformation: identification of determinants for icosahedral particle formation. Structure (in the press).
Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature375, 291–298 (1995). First structure of a class II fusion protein. ArticleCASPubMed Google Scholar
Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl Acad. Sci. USA100, 6986–6991 (2003). ArticleCASPubMedPubMed Central Google Scholar
Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J. Virol.79, 1223–1231 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Y. et al. Conformational changes of the flavivirus E glycoprotein. Structure (Camb.)12, 1607–1618 (2004). ArticleCAS Google Scholar
Wahlberg, J. M. & Garoff, H. Membrane fusion process of Semliki Forest virus I: low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells. J. Cell Biol.116, 339–348 (1992). ArticleCASPubMed Google Scholar
Wahlberg, J. M., Bron, R., Wilschut, J. & Garoff, H. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J. Virol.66, 7309–7318 (1992). References 56 and 57 comprise the first reports of homotrimer formation for a class II fusion protein. ArticleCASPubMedPubMed Central Google Scholar
Allison, S. L. et al. Oligomeric rearrangement of tick-borne encephatitis virus envelope proteins induced by an acidic pH. J. Virol.69, 695–700 (1995). ArticleCASPubMedPubMed Central Google Scholar
Gibbons, D. L., Ahn, A., Chatterjee, P. K. & Kielian, M. Formation and characterization of the trimeric form of the fusion protein of Semliki Forest virus. J. Virol.74, 7772–7780 (2000). ArticleCASPubMedPubMed Central Google Scholar
Stiasny, K., Allison, S. L., Mandl, C. W. & Heinz, F. X. Role of metastability and acidic pH in membrane fusion by tick-borne encephalitis virus. J. Virol.75, 7392–7398 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kielian, M., Klimjack, M. R., Ghosh, S. & Duffus, W. A. Mechanisms of mutations inhibiting fusion and infection by Semliki Forest virus. J. Cell Biol.134, 863–872 (1996). ArticleCASPubMed Google Scholar
Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W. & Heinz, F. X. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol.75, 4268–4275 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wahlberg, J. M., Boere, W. A. M. & Garoff, H. The heterodimeric association between the membrane proteins of Semliki Forest virus changes its sensitivity to low pH during virus maturation. J. Virol.63, 4991–4997 (1989). ArticleCASPubMedPubMed Central Google Scholar
Klimjack, M. R., Jeffrey, S. & Kielian, M. Membrane and protein interactions of a soluble form of the Semliki Forest virus fusion protein. J. Virol.68, 6940–6946 (1994). First demonstration that class II ectodomain can form homotrimer when treated at low pH in presence of target membrane. ArticleCASPubMedPubMed Central Google Scholar
Stiasny, K., Allison, S. L., Schalich, J. & Heinz, F. X. Membrane interactions of the tick-borne encephalitis virus fusion protein E at low pH. J. Virol.76, 3784–3790 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gibbons, D. L. et al. Purification and crystallization reveal two types of interactions of the fusion protein homotrimer of Semliki Forest virus. J. Virol.787, 3514–3523 (2004). ArticleCAS Google Scholar
Stiasny, K., Bressanelli, S., Lepault, J., Rey, F. A. & Heinz, F. X. Characterization of a membrane-associated trimeric low-pH-induced form of the class II viral fusion protein E from tick-borne encephalitis virus and its crystallization. J. Virol.78, 3178–3183 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gibbons, D. L. et al. Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus. Nature427, 320–325 (2004). ArticleCASPubMed Google Scholar
Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Structure of the dengue virus envelope protein after membrane fusion. Nature427, 313–319 (2004). ArticleCASPubMed Google Scholar
Bressanelli, S. et al. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J.23, 728–738 (2004). References 68, 69 and 70 are the first reports of low-pH-induced homotrimer structure of class II fusion proteins. ArticleCASPubMedPubMed Central Google Scholar
Gibbons, D. L. et al. Multistep regulation of membrane insertion of the fusion peptide of Semliki Forest virus. J. Virol.78, 3312–3318 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ahn, A., Gibbons, D. L. & Kielian, M. The fusion peptide of Semliki Forest virus associates with sterol-rich membrane domains. J. Virol.76, 3267–3275 (2002). ArticleCASPubMedPubMed Central Google Scholar
White, J. & Helenius, A. pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc. Natl Acad. Sci. USA77, 3273–3277 (1980). ArticleCASPubMedPubMed Central Google Scholar
Kielian, M. C. & Helenius, A. The role of cholesterol in the fusion of Semliki Forest virus with membranes. J. Virol.52, 281–283 (1984). ArticleCASPubMedPubMed Central Google Scholar
Nieva, J. L., Bron, R., Corver, J. & Wilschut, J. Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J.13, 2797–2804 (1994). ArticleCASPubMedPubMed Central Google Scholar
Corver, J. et al. Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. Virology269, 37–46 (2000). ArticleCASPubMed Google Scholar
Stiasny, K., Koessl, C. & Heinz, F. X. Involvement of lipids in different steps of the flavivirus fusion mechanism. J. Virol.77, 7856–7862 (2003). ArticleCASPubMedPubMed Central Google Scholar
Phalen, T. & Kielian, M. Cholesterol is required for infection by Semliki Forest virus. J. Cell Biol.112, 615–623 (1991). ArticleCASPubMed Google Scholar
Lu, Y. E., Cassese, T. & Kielian, M. The cholesterol requirement for Sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence. J. Virol.73, 4272–4278 (1999). ArticleCASPubMedPubMed Central Google Scholar
Vashishtha, M. et al. A single point mutation controls the cholesterol dependence of Semliki Forest virus entry and exit. J. Cell Biol.140, 91–99 (1998). ArticleCASPubMedPubMed Central Google Scholar
Chatterjee, P. K., Eng, C. H. & Kielian, M. Novel mutations that control the sphingolipid and cholesterol dependence of the Semliki Forest virus fusion protein. J. Virol.76, 12712–12722 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gibbons, D. L. & Kielian, M. Molecular dissection of the Semliki Forest virus homotrimer reveals two functionally distinct regions of the fusion protein. J. Virol.76, 1194–1205 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chanel-Vos, C. & Kielian, M. A conserved histidine in the ij loop of the Semliki Forest virus E1 protein plays an important role in membrane fusion. J. Virol.78, 13543–13552 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gibbons, D. L. et al. Visualization of the target-membrane-inserted fusion protein of Semliki Forest virus by combined electron microscopy and crystallography. Cell114, 573–583 (2003). ArticleCASPubMed Google Scholar
Caspar, D. L. & Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol.27, 1–24 (1962). ArticleCASPubMed Google Scholar
Krishnan, A. et al. Graphitic cones and the nucleation of curved carbon surfaces. Nature388, 451–454 (1997). ArticleCAS Google Scholar
Chernomordik, L. V. & Kozlov, M. M. Protein–lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem.72, 175–207 (2003). ArticleCASPubMed Google Scholar
Zaitseva, E., Mittal, A., Griffin, D. E. & Chernomordik, L. V. Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins. J. Cell Biol.169, 167–177 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kozlov, M. M. & Chernomordik, L. V. The protein coat in membrane fusion: lessons from fission. Traffic3, 256–267 (2002). ArticlePubMed Google Scholar
Yang, X., Kurteva, S., Lee, S. & Sodroski, J. Stoichiometry of antibody neutralization of human immunodeficiency virus type 1. J. Virol.79, 3500–3508 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yang, X., Kurteva, S., Ren, X., Lee, S. & Sodroski, J. Stoichiometry of envelope glycoprotein trimers in the entry of human immunodeficiency virus type 1. J. Virol.79, 12132–12147 (2005). ArticleCASPubMedPubMed Central Google Scholar
Liao, M. & Kielian, M. Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus-membrane fusion. J. Cell Biol.171, 111–120 (2005). First demonstration of inhibition of class II hairpin formation and membrane fusion. ArticleCASPubMedPubMed Central Google Scholar
Durrer, P., Gaudin, Y., Ruigrok, R. W. H., Graf, R. & Brunner, J. Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J. Biol. Chem.270, 17575–17581 (1995). ArticleCASPubMed Google Scholar
Gaudin, Y. Reversibility in fusion protein conformational changes. The intriguing case of rhabdovirus-induced membrane fusion. Subcell. Biochem.34, 379–408 (2000). ArticleCASPubMed Google Scholar
Townsley, A. C., Senkevich, T. G. & Moss, B. The product of the vaccinia virus L5R gene is a fourth membrane protein encoded by all poxviruses that is required for cell entry and cell–cell fusion. J. Virol.79, 10988–10998 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shmulevitz, M. & Duncan, R. A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. EMBO J.19, 902–912 (2000). ArticleCASPubMedPubMed Central Google Scholar
Corcoran, J. A. & Duncan, R. Reptilian reovirus utilizes a small type III protein with an external myristylated amino terminus to mediate cell–cell fusion. J. Virol.78, 4342–4351 (2004). ArticleCASPubMedPubMed Central Google Scholar