Crystal structure of the β2 adrenergic receptor–Gs protein complex (original) (raw)
Dixon, R. A. et al. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature321, 75–79 (1986) ArticleADSCAS Google Scholar
Rasmussen, S. G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature450, 383–387 (2007) ArticleADSCAS Google Scholar
Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science318, 1266–1273 (2007) ArticleADSCAS Google Scholar
Lefkowitz, R. J. Seven transmembrane receptors: something old, something new. Acta Physiol. (Oxf.)190, 9–19 (2007) ArticleCAS Google Scholar
Brandt, D. R., Asano, T., Pedersen, S. E. & Ross, E. M. Reconstitution of catecholamine-stimulated guanosinetriphosphatase activity. Biochemistry22, 4357–4362 (1983) ArticleCAS Google Scholar
Cerione, R. A. et al. The mammalian β2-adrenergic receptor: reconstitution of functional interactions between pure receptor and pure stimulatory nucleotide binding protein of the adenylate cyclase system. Biochemistry23, 4519–4525 (1984) ArticleCAS Google Scholar
Ross, E. M., Maguire, M. E., Sturgill, T. W., Biltonen, R. L. & Gilman, A. G. Relationship between the β-adrenergic receptor and adenylate cyclase. Studies of ligand binding and enzyme activity in purified membranes of S49 lymphoma cells. J. Biol. Chem.252, 5761–5775 (1977) CASPubMed Google Scholar
De Lean, A., Stadel, J. M. & Lefkowitz, R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem.255, 7108–7117 (1980) CAS Google Scholar
Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol.63, 1256–1272 (2003) ArticleCAS Google Scholar
Azzi, M. et al. β-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl Acad. Sci. USA100, 11406–11411 (2003) ArticleADSCAS Google Scholar
Lefkowitz, R. J. & Shenoy, S. K. Transduction of receptor signals by β-arrestins. Science308, 512–517 (2005) ArticleADSCAS Google Scholar
Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature469, 175–180 (2011) ArticleADSCAS Google Scholar
Chae, P. S. et al. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nature Methods7, 1003–1008 (2010) ArticleCAS Google Scholar
Sprang, S. R. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem.66, 639–678 (1997) ArticleCAS Google Scholar
Misquitta, L. V. et al. Membrane protein crystallization in lipidic mesophases with tailored bilayers. Structure12, 2113–2124 (2004) ArticleCAS Google Scholar
Domanska, K. et al. Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic β2-microglobulin variant. Proc. Natl Acad. Sci. USA108, 1314–1319 (2011) ArticleADSCAS Google Scholar
Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature454, 486–491 (2008) ArticleADSCAS Google Scholar
Hofmann, K. P. et al. A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem. Sci.34, 540–552 (2009) ArticleCAS Google Scholar
Moro, O., Lameh, J., Hogger, P. & Sadee, W. Hydrophobic amino acid in the i2 loop plays a key role in receptor-G protein coupling. J. Biol. Chem.268, 22273–22276 (1993) CASPubMed Google Scholar
Baltensperger, K. et al. The β-adrenergic receptor is a substrate for the insulin receptor tyrosine kinase. J. Biol. Chem.271, 1061–1064 (1996) ArticleCAS Google Scholar
Jastrzebska, B., Tsybovsky, Y. & Palczewski, K. Complexes between photoactivated rhodopsin and transducin: progress and questions. Biochem. J.428, 1–10 (2010) ArticleCAS Google Scholar
Johnston, C. A. & Siderovski, D. P. Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Mol. Pharmacol.72, 219–230 (2007) ArticleCAS Google Scholar
Breitwieser, G. E. G protein-coupled receptor oligomerization: implications for G protein activation and cell signaling. Circ. Res.94, 17–27 (2004) ArticleCAS Google Scholar
Banères, J. L. & Parello, J. Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. J. Mol. Biol.329, 815–829 (2003) Article Google Scholar
Angers, S., Salahpour, A. & Bouvier, M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol.42, 409–435 (2002) ArticleCAS Google Scholar
Sunahara, R. K., Tesmer, J. J., Gilman, A. G. & Sprang, S. R. Crystal structure of the adenylyl cyclase activator Gsα . Science278, 1943–1947 (1997) ArticleADSCAS Google Scholar
Van Eps, N. et al. Interaction of a G protein with an activated receptor opens the interdomain interface in the α subunit. Proc. Natl Acad. Sci. USA108, 9420–9424 (2011) ArticleADSCAS Google Scholar
Markby, D. W., Onrust, R. & Bourne, H. R. Separate GTP binding and GTPase activating domains of a Gα subunit. Science262, 1895–1901 (1993) ArticleADSCAS Google Scholar
Conklin, B. R. & Bourne, H. R. Structural elements of Gα subunits that interact with Gβγ, receptors, and effectors. Cell73, 631–641 (1993) ArticleCAS Google Scholar
Oldham, W. M. & Hamm, H. E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nature Rev. Mol. Cell Biol.9, 60–71 (2008) ArticleCAS Google Scholar
Wall, M. A. et al. The structure of the G protein heterotrimer Gi_α_1 β 1 γ 2 . Cell83, 1047–1058 (1995) ArticleCAS Google Scholar
Choe, H. W. et al. Crystal structure of metarhodopsin II. Nature471, 651–655 (2011) ArticleADSCAS Google Scholar
Standfuss, J. et al. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature471, 656–660 (2011) ArticleADSCAS Google Scholar
Westfield, G. et al. Structurall flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex. Proc. Nati Acad. Sci. USA 10.1073/pnas.1113645108 (in the press)
Chung, K. Y. et al. β2 adrenergic receptor-induced conformational changes in the heterotrimeric G protein Gs. Nature 10.1038/nature10488 (this issue)
Kobilka, B. K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal. Biochem.231, 269–271 (1995) ArticleCAS Google Scholar
Whorton, M. R. et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl Acad. Sci. USA104, 7682–7687 (2007) ArticleADSCAS Google Scholar
Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nature Protocols4, 706–731 (2009) ArticleCAS Google Scholar
Rosenbaum, D. M. et al. Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature469, 236–240 (2011) ArticleADSCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997) ArticleCAS Google Scholar
Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis . Proc. Natl Acad. Sci. USA103, 8060–8065 (2006) ArticleADSCAS Google Scholar
McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser . Acta Crystallogr. D63, 32–41 (2007) ArticleCAS Google Scholar
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst.40, 658–674 (2007) ArticleCAS Google Scholar
Afonine, P. V., Grosse-Kunstleve, R. W. & Adams, P. D. A robust bulk-solvent correction and anisotropic scaling procedure. Acta Crystallogr. D61, 850–855 (2005) Article Google Scholar
Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT . Acta Crystallogr. D60, 2210–2221 (2004) ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) Article Google Scholar
Schröder, G. F., Levitt, M. & Brunger, A. T. Super-resolution biomolecular crystallography with low-resolution data. Nature464, 1218–1222 (2010) ArticleADS Google Scholar
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D66, 12–21 (2010) ArticleCAS Google Scholar
Swaminath, G., Steenhuis, J., Kobilka, B. & Lee, T. W. Allosteric modulation of β2-adrenergic receptor by Zn2+ . Mol. Pharmacol.61, 65–72 (2002) ArticleCAS Google Scholar