Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol.5, 133–147 (2004) ArticleCAS Google Scholar
Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem.76, 751–780 (2007) ArticleCAS Google Scholar
Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature410, 231–235 (2001) ArticleADSCAS Google Scholar
Stowell, M. H. B., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol.1, 27–32 (1999) ArticleCAS Google Scholar
Mears, J. A. et al. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nature Struct. Mol. Biol.18, 20–26 (2011) ArticleCAS Google Scholar
Warnock, D. E., Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembly stimulates its GTPase activity. J. Biol. Chem.271, 22310–22314 (1996) ArticleCAS Google Scholar
Danino, D., Moon, K. H. & Hinshaw, J. E. Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J. Struct. Biol.147, 259–267 (2004) ArticleCAS Google Scholar
Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell135, 1263–1275 (2008) ArticleCAS Google Scholar
Chappie, J. S. et al. An intramolecular signaling element that modulates dynamin function in vitro and in vivo . Mol. Biol. Cell20, 3561–3571 (2009) ArticleCAS Google Scholar
Chappie, J. S., Acharya, S., Leonard, M., Schmid, S. L. & Dyda, F. G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature465, 435–440 (2010) ArticleADSCAS Google Scholar
Timm, D. et al. Crystal structure of the pleckstrin homology domain from dynamin. Nature Struct. Biol.1, 782–788 (1994) ArticleCAS Google Scholar
Achiriloaie, M., Barylko, B. & Albanesi, J. P. Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol. Cell. Biol.19, 1410–1415 (1999) ArticleCAS Google Scholar
Ferguson, K. M., Lemmon, M. A., Schlessinger, J. & Sigler, P. B. Crystal structure at 2.2 Å resolution of the pleckstrin homology domain from human dynamin. Cell79, 199–209 (1994) ArticleCAS Google Scholar
Ramachandran, R. et al. Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission. Mol. Biol. Cell20, 4630–4639 (2009) ArticleCAS Google Scholar
Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature374, 190–192 (1995) ArticleADSCAS Google Scholar
Ingerman, E. et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol.170, 1021–1027 (2005) ArticleCAS Google Scholar
Mears, J. A., Ray, P. & Hinshaw, J. E. A corkscrew model for dynamin constriction. Structure15, 1190–1202 (2007) ArticleCAS Google Scholar
Gao, S. et al. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature465, 502–506 (2010) ArticleADSCAS Google Scholar
Low, H. H., Sachse, C., Amos, L. A. & Lowe, J. Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell139, 1342–1352 (2009) Article Google Scholar
Prakash, B., Praefcke, G. J., Renault, L., Wittinghofer, A. & Herrmann, C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature403, 567–571 (2000) ArticleADSCAS Google Scholar
Ghosh, A., Praefcke, G. J., Renault, L., Wittinghofer, A. & Herrmann, C. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature440, 101–104 (2006) ArticleADSCAS Google Scholar
Bian, X. et al. Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc. Natl Acad. Sci. USA108, 3976–3981 (2011) ArticleADSCAS Google Scholar
Byrnes, L. J. & Sondermann, H. Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A. Proc. Natl Acad. Sci. USA108, 2216–2221 (2011) ArticleADSCAS Google Scholar
Zhang, P. & Hinshaw, J. E. Three-dimensional reconstruction of dynamin in the constricted state. Nature Cell Biol.3, 922–926 (2001) ArticleCAS Google Scholar
Siegel, L. M. & Monty, K. J. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim. Biophys. Acta112, 346–362 (1966) ArticleCAS Google Scholar
Ramachandran, R. et al. The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J.26, 559–566 (2007) ArticleCAS Google Scholar
Gao, S. et al. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature465, 502–506 (2010) ArticleADSCAS Google Scholar
Song, B. D., Yarar, D. & Schmid, S. L. An assembly-incompetent mutant establishes a requirement for dynamin self-assembly in clathrin-mediated endocytosis in vivo . Mol. Biol. Cell15, 2243–2252 (2004) ArticleCAS Google Scholar
Reubold, T. F. et al. Crystal structure of the GTPase domain of rat dynamin 1. Proc. Natl Acad. Sci. USA102, 13093–13098 (2005) ArticleADSCAS Google Scholar
Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell93, 1021–1029 (1998) ArticleCAS Google Scholar
Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell135, 1276–1286 (2008) ArticleCAS Google Scholar
Kenniston, J. A. & Lemmon, M. A. Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients. EMBO J.29, 3054–3067 (2010) ArticleCAS Google Scholar
Niemann, H. H., Knetsch, M. L., Scherer, A., Manstein, D. J. & Kull, F. J. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J.20, 5813–5821 (2001) ArticleCAS Google Scholar
Barylko, B. et al. The proline/arginine-rich domain is a major determinant of dynamin self-activation. Biochemistry49, 10592–10594 (2010) ArticleCAS Google Scholar
Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol.9, 257–263 (1999) ArticleCAS Google Scholar
Durieux, A. C., Prudhon, B., Guicheney, P. & Bitoun, M. Dynamin 2 and human diseases. J. Mol. Med.88, 339–350 (2010) Article Google Scholar
Lackner, L. L., Horner, J. S. & Nunnari, J. Mechanistic analysis of a dynamin effector. Science325, 874–877 (2009) ArticleADSCAS Google Scholar
Gandre-Babbe, S. & van der Bliek, A. M. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell19, 2402–2412 (2008) ArticleCAS Google Scholar
Kosaka, T. & Ikeda, K. Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila . J. Neurobiol.14, 207–225 (1983) ArticleCAS Google Scholar
Ramaswami, M., Rao, S., van der Bliek, A., Kelly, R. B. & Krishnan, K. S. Genetic studies on dynamin function in Drosophila . J. Neurogenet.9, 73–87 (1993) ArticleCAS Google Scholar
Narayanan, R., Leonard, M., Song, B. D., Schmid, S. L. & Ramaswami, M. An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function. J. Cell Biol.169, 117–126 (2005) ArticleCAS Google Scholar
Ingerman, E. & Nunnari, J. A continuous, regenerative coupled GTPase assay for dynamin-related proteins. Methods Enzymol.404, 611–619 (2005) ArticleCAS Google Scholar