X-ray structures of LeuT in substrate-free outward-open and apo inward-open states (original) (raw)
Hertting, G. & Axelrod, J. Fate of tritiated noradrenaline at the sympathetic nerve-endings. Nature192, 172–173 (1961) ArticleADSCAS Google Scholar
Nelson, N. The family of Na+/Cl− neurotransmitter transporters. J. Neurochem.71, 1785–1803 (1998) ArticleCAS Google Scholar
Saier, M. H. J. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev.64, 354–411 (2000) ArticleCAS Google Scholar
Hahn, M. K. & Blakely, R. D. Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders. Pharmacogenomics J.2, 217–235 (2002) ArticleCAS Google Scholar
Klimek, V. et al. Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J. Neurosci.17, 8451–8458 (1997) ArticleCAS Google Scholar
Richerson, G. B. & Wu, Y. Role of the GABA transporter in epilepsy. Adv. Exp. Med. Biol.548, 76–91 (2004) ArticleCAS Google Scholar
Amara, S. G. & Sonders, M. S. Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend.51, 87–96 (1998) ArticleCAS Google Scholar
Mitchell, P. A general theory of membrane transport from studies of bacteria. Nature180, 134–136 (1957) ArticleADSCAS Google Scholar
Jardetzky, O. Simple allosteric model for membrane pumps. Nature211, 969–970 (1966) ArticleADSCAS Google Scholar
Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature437, 215–223 (2005) ArticleADSCAS Google Scholar
Singh, S., Yamashita, A. & Gouaux, E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature448, 952–956 (2007) ArticleADSCAS Google Scholar
Singh, S. K., Piscitelli, C. L., Yamashita, A. & Gouaux, E. A competitive inhibitor traps LeuT in an open-to-out conformation. Science322, 1655–1661 (2008) ArticleADSCAS Google Scholar
Zhou, Z. et al. LeuT-desipramine structure reveals how antidepressants block neurotransmitter uptake. Science317, 1390–1393 (2007) ArticleADSCAS Google Scholar
Zhou, Z. et al. Antidepressant specificity of serotonin transporter suggested by three LeuT–SSRI structures. Nature Struct. Mol. Biol.16, 652–657 (2009) ArticleCAS Google Scholar
Weyand, S. et al. Structure and molecular mechanism of a nucleobase–cation–symport-1 family transporter. Science322, 709–713 (2008) ArticleADSCAS Google Scholar
Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science321, 810–814 (2008) ArticleADSCAS Google Scholar
Shaffer, P. L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science325, 1010–1014 (2009) ArticleADSCAS Google Scholar
Shimamura, T. et al. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science328, 470–473 (2010) ArticleADSCAS Google Scholar
Krishnamurthy, H., Piscitelli, C. L. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature459, 347–355 (2009) ArticleADSCAS Google Scholar
Shaikh, S. A. & Tajkhorshid, E. Modeling and dynamics of the inward-facing state of a Na+/Cl− dependent neurotransmitter transporter homologue. PLOS Comput. Biol.6, e1000905 (2010) ArticleADS Google Scholar
Claxton, D. P. et al. Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters. Nature Struct. Mol. Biol.17, 822–829 (2010) ArticleCAS Google Scholar
Forrest, L. R. et al. Mechanism for alternating access in neurotransmitter transporters. Proc. Natl Acad. Sci. USA105, 10338–10343 (2008) ArticleADSCAS Google Scholar
Zhao, Y. et al. Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature465, 188–193 (2010) ArticleADSCAS Google Scholar
Boudker, O. & Verdon, G. Structural perspectives on secondary active transporters. Trends Pharmacol. Sci.31, 418–426 (2010) ArticleCAS Google Scholar
Piscitelli, C. L., Krishnamurthy, H. & Gouaux, E. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature468, 1129–1132 (2010) ArticleADSCAS Google Scholar
Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure14, 673–681 (2006) ArticleCAS Google Scholar
Kniazeff, J. et al. An intracellular interaction network regulates conformational transitions in the dopamine transporter. J. Biol. Chem.283, 17691–17701 (2008) ArticleCAS Google Scholar
Loland, C. J., Norregaard, L., Litman, T. & Gether, U. Generation of an activating Zn2+ switch in the dopamine transporter: mutation of an intracellular tyrosine constitutively alters the conformational equilibrium of the transport cycle. Proc. Natl Acad. Sci. USA99, 1683–1688 (2002) ArticleADSCAS Google Scholar
Celik, L., Schiott, B. & Tajkhorshid, E. Substrate binding and formation of an occluded state in the leucine transporter. Biophys. J.94, 1600–1612 (2008) ArticleCAS Google Scholar
Harding, M. M. Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr. D62, 678–682 (2006) Article Google Scholar
Zhang, Y.-W. & Rudnick, G. The cytoplasmic substrate permeation pathway of serotonin transporter. J. Biol. Chem.281, 36213–36220 (2006) ArticleCAS Google Scholar
Rudnick, G. The cytoplasmic permeation pathway of neurotransmitter transporters. Biochemistry50, 7462–7475 (2011) ArticleCAS Google Scholar
Ben-Yona, A. & Kanner, B. I. Transmembrane domain 8 of the γ-aminobutyric acid transporter GAT-1 lines a cytoplasmic accessibility pathway into its binding pocket. J. Biol. Chem.284, 9727–9732 (2009) ArticleCAS Google Scholar
Tao, Z., Zhang, Y. W., Agyiri, A. & Rudnick, G. Ligand effects on cross-linking support a conformational mechanism for serotonin transport. J. Biol. Chem.284, 33807–33814 (2009) ArticleCAS Google Scholar
Rosenberg, A. & Kanner, B. I. The substrates of the γ-aminobutyric acid transporter GAT-1 induce structural rearrangements around the interface of transmembrane domains 1 and 6. J. Biol. Chem.283, 14376–14383 (2008) ArticleCAS Google Scholar
Henry, L. K., Adkins, E. M., Han, Q. & Blakely, R. D. Serotonin and cocaine-sensitive inactivation of human serotonin transporters by methanethiosulfonates targeted to transmembrane domain I. J. Biol. Chem.278, 37052–37063 (2003) ArticleCAS Google Scholar
Zomot, E. & Kanner, B. I. The interaction of the γ-aminobutyric acid transporter GAT-1 with the neurotransmitter is selectively impaired by sulfhydryl modification of a conformationally sensitive cysteine residue engineered into extracellular loop IV. J. Biol. Chem.278, 42950–42958 (2003) ArticleCAS Google Scholar
Mitchell, S. M., Lee, E., Garcia, M. L. & Stephan, M. M. Structure and function of extracellular loop 4 of the serotonin transporter as revealed by cysteine-scanning mutagenesis. J. Biol. Chem.279, 24089–24099 (2004) ArticleCAS Google Scholar
Smicun, Y., Campbell, S. D., Chen, M. A., Gu, H. & Rudnick, G. The role of external loop regions in serotonin transport. Loop scanning mutagenesis of the serotonin transporter external domain. J. Biol. Chem.274, 36058–36064 (1999) ArticleCAS Google Scholar
Hirayama, B. A., Diez-Sampedro, A. & Wright, E. M. Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/Cl−/GABA (hGAT1) cotransporters. Br. J. Pharmacol.134, 484–495 (2001) ArticleCAS Google Scholar
Jacobs, M. T., Zhang, Y. W., Campbell, S. D. & Rudnick, G. Ibogaine, a noncompetitive inhibitor of serotonin transport, acts by stabilizing the cytoplasm-facing state of the transporter. J. Biol. Chem.282, 29441–29447 (2007) ArticleCAS Google Scholar
Shi, L., Quick, M., Zhao, Y., Weinstein, H. & Javitch, J. A. The mechanism of a neurotransmitter:sodium symporter-inward release of Na+ and substrate is triggered by a substrate in a second binding site. Mol. Cell30, 667–677 (2008) ArticleCAS Google Scholar
Zhao, Y. et al. Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature474, 109–113 (2011) ArticleCAS Google Scholar
Pantanowitz, S., Bendahan, A. & Kanner, B. I. Only one of the charged amino acids located in the transmembrane α-helices of the γ-aminobutyric acid transporter (subtype A) is essential for its activity. J. Biol. Chem.268, 3222–3225 (1993) CASPubMed Google Scholar
Bennett, E. R., Su, H. & Kanner, B. I. Mutation of arginine 44 of GAT-1, a (Na+ + Cl−)-coupled γ-aminobutyric acid transporter from rat brain, impairs net flux but not exchange. J. Biol. Chem.275, 34106–34113 (2000) ArticleCAS Google Scholar
Loland, C. J., Granas, C., Javitch, J. A. & Gether, U. Identification of intracellular residues in the dopamine transporter critical for regulation of transporter conformation and cocaine binding. J. Biol. Chem.279, 3228–3238 (2004) ArticleCAS Google Scholar
Chen, N., Rickey, J., Berfield, J. L. & Reith, M. E. Aspartate 345 of the dopamine transporter is critical for conformational changes in substrate translocation and cocaine binding. J. Biol. Chem.279, 5508–5519 (2004) ArticleCAS Google Scholar
Watanabe, A. et al. The mechanism of sodium and substrate release from the binding pocket of vSGLT. Nature468, 988–991 (2010) ArticleADSCAS Google Scholar
Quick, M. et al. State-dependent conformations of the translocation pathway in the tyrosine transporter Tyt1, a novel neurotransmitter:sodium symporter from Fusobacterium nucleatum . J. Biol. Chem.281, 26444–26454 (2006) ArticleCAS Google Scholar
Shi, L. & Weinstein, H. Conformational rearrangements to the intracellular open states of the LeuT and ApcT transporters are modulated by common mechanisms. Biophys. J.99, L103–L105 (2010) ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997) ArticleCAS Google Scholar
Collaborative Computational Project 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994)
Matthews, B. W. Solvent content of protein crystals. J. Mol. Biol.33, 491–497 (1968) ArticleCAS Google Scholar
McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D63, 32–41 (2007) ArticleCAS Google Scholar
Kopp, J. & Schwede, T. The SWISS-MODEL Repository: new features and functionalities. Nucleic Acids Res.34, D315–D318 (2006) ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) Article Google Scholar
Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D58, 1948–1954 (2002) Article Google Scholar
Painter, J. & Merritt, E. A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D62, 439–450 (2006) Article Google Scholar
Terwilliger, T. C. Using prime-and-switch phasing to reduce model bias in molecular replacement. Acta Crystallogr. D60, 2144–2149 (2004) Article Google Scholar
Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols4, 363–371 (2009) ArticleCAS Google Scholar
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D66, 12–21 (2010) ArticleCAS Google Scholar