Chromatin organization is a major influence on regional mutation rates in human cancer cells (original) (raw)
Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature456, 66–72 (2008) ArticleADSCAS Google Scholar
Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature463, 184–190 (2010) ArticleADSCAS Google Scholar
Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature463, 191–196 (2010) ArticleADSCAS Google Scholar
Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature470, 214–220 (2011) ArticleADSCAS Google Scholar
Puente, X. S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature475, 101–105 (2011) ArticleCAS Google Scholar
Lee, W. et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature465, 473–477 (2010) ArticleADSCAS Google Scholar
Hodgkinson, A., Chen, Y. & Eyre-Walker, A. The large-scale distribution of somatic mutations in cancer genomes. Hum. Mutat.33, 136–143 (2012) ArticleCAS Google Scholar
Wolfe, K. H., Sharp, P. M. & Li, W. H. Mutation rates differ among regions of the mammalian genome. Nature337, 283–285 (1989) ArticleADSCAS Google Scholar
Ellegren, H., Smith, N. G. C. & Webster, M. T. Mutation rate variation in the mammalian genome. Curr. Opin. Genet. Dev.13, 562–568 (2003) ArticleCAS Google Scholar
Cooper, D. N. & Krawczak, M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum. Genet.83, 181–188 (1989) ArticleCAS Google Scholar
Stamatoyannopoulos, J. et al. Human mutation rate associated with DNA replication timing. Nature Genet.41, 393–395 (2009) ArticleCAS Google Scholar
Prendergast, J. G. D. et al. Chromatin structure and evolution in the human genome. BMC Evol. Biol.7, 72 (2007) Article Google Scholar
Lercher, M. J. & Hurst, L. D. Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet.18, 337–340 (2002) ArticleCAS Google Scholar
Hansen, R. S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl Acad. Sci. USA107, 139–144 (2010) ArticleADSCAS Google Scholar
Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell132, 887–898 (2008) ArticleCAS Google Scholar
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326, 289–293 (2009) ArticleADSCAS Google Scholar
Kong, A. et al. A high-resolution recombination map of the human genome. Nature Genet.31, 241–247 (2002) ArticleCAS Google Scholar
Dreszer, T. R. et al. The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Res.40, D918–D923 (2012) ArticleCAS Google Scholar
Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genet.40, 897–903 (2008) ArticleCAS Google Scholar
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell129, 823–837 (2007) ArticleCAS Google Scholar
Gossmann, T. I., Woolfit, M. & Eyre-Walker, A. Quantifying the variation in the effective population size within a genome. Genetics189, 1389–1402 (2011) Article Google Scholar
Vavouri, T. & Lehner, B. Chromatin organization in sperm may be the major functional consequence of base composition variation in the human genome. PLoS Genet.7, e1002036 (2011) ArticleCAS Google Scholar
Peterson, C. L. & Côté, J. Cellular machineries for chromosomal DNA repair. Genes Dev.18, 602–616 (2004) ArticleCAS Google Scholar
Goodarzi, A. A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell31, 167–177 (2008) ArticleCAS Google Scholar
Misteli, T. Beyond the sequence: cellular organization of genome function. Cell128, 787–800 (2007) ArticleCAS Google Scholar
Wheeler, D. L. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res.35, D5–D12 (2007) ArticleADSCAS Google Scholar
A map of human genome variation from population-scale sequencing. Nature467, 1061–1073 (2010)
Paten, B., Herrero, J., Beal, K., Fitzgerald, S. & Birney, E. Enredo and Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs. Genome Res.18, 1814–1828 (2008) ArticleCAS Google Scholar
Zhang, Y., Shin, H., Song, J. S., Lei, Y. & Liu, X. S. Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC Genomics9, 537 (2008) Article Google Scholar
Broad Institute Sequencing Platform and Whole Genome Assembly Team et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature478, 476–481 (2011)