Crystal structure of a bacterial homologue of glucose transporters GLUT1–4 (original) (raw)
Thorens, B. & Mueckler, M. Glucose transporters in the 21st Century. Am. J. Physiol. Endocrinol. Metab.298, E141–E145 (2010) ArticleCASPubMed Google Scholar
Pascual, J. M. et al. GLUT1 deficiency and other glucose transporter diseases. Eur. J. Endocrinol.150, 627–633 (2004) ArticleCASPubMed Google Scholar
Scheepers, A., Joost, H. G. & Schurmann, A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN J. Parenter. Enteral Nutr.28, 364–371 (2004) ArticleCASPubMed Google Scholar
Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science321, 810–814 (2008) ArticleADSCASPubMedPubMed Central Google Scholar
Mueckler, M. et al. Sequence and structure of a human glucose transporter. Science229, 941–945 (1985) ArticleADSCASPubMed Google Scholar
Klepper, J. Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia49 (Suppl 8). 46–49 (2008) ArticlePubMed Google Scholar
Brockmann, K. The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev.31, 545–552 (2009) ArticlePubMed Google Scholar
Scheffer, I. E. GLUT1 deficiency: a glut of epilepsy phenotypes. Neurology78, 524–525 (2012) ArticlePubMed Google Scholar
Santer, R. et al. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi–Bickel syndrome. Nature Genet.17, 324–326 (1997) ArticleCASPubMed Google Scholar
Leturque, A., Brot-Laroche, E. & Le Gall, M. GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am. J. Physiol. Endocrinol. Metab.296, E985–E992 (2009) ArticleCASPubMed Google Scholar
Simpson, I. A. et al. The facilitative glucose transporter GLUT3: 20 years of distinction. Am. J. Physiol. Endocrinol. Metab.295, E242–E253 (2008) ArticleCASPubMedPubMed Central Google Scholar
Amann, T. & Hellerbrand, C. GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin. Ther. Targets13, 1411–1427 (2009) ArticleCASPubMed Google Scholar
Macheda, M. L., Rogers, S. & Best, J. D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell. Physiol.202, 654–662 (2005) ArticleCASPubMed Google Scholar
Mueckler, M. The molecular biology of glucose transport: relevance to insulin resistance and non-insulin-dependent diabetes mellitus. J. Diabetes Complications7, 130–141 (1993) ArticleCASPubMed Google Scholar
Leney, S. E. & Tavare, J. M. The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets. J. Endocrinol.203, 1–18 (2009) ArticleCASPubMed Google Scholar
Nelson, D. L. & Cox, M. M. Lehninger Principles of Biochemistry 1158 (W. H. Freeman, 2008) Google Scholar
Pao, S. S., Paulsen, I. T. & Saier, M. H., Jr Major facilitator superfamily. Microbiol. Mol. Biol. Rev.62, 1–34 (1998) CASPubMedPubMed Central Google Scholar
Henderson, P. J. & Maiden, M. C. Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. Phil. Trans. R. Soc. Lond. B326, 391–410 (1990) ArticleADSCAS Google Scholar
Ozcan, S. & Johnston, M. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev.63, 554–569 (1999) CASPubMedPubMed Central Google Scholar
Buttner, M. The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett.581, 2318–2324 (2007) ArticlePubMed Google Scholar
Li, F. et al. Characterization of sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L. BMC Plant Biol.11, 168 (2011) ArticlePubMedPubMed Central Google Scholar
Mueckler, M. & Makepeace, C. Model of the exofacial substrate-binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis. Biochemistry48, 5934–5942 (2009) ArticleCASPubMed Google Scholar
Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science301, 610–615 (2003) ArticleADSCASPubMed Google Scholar
Huang, Y., Lemieux, M. J., Song, J., Auer, M. & Wang, D. N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science301, 616–620 (2003) ArticleADSCASPubMed Google Scholar
Yin, Y., He, X., Szewczyk, P., Nguyen, T. & Chang, G. Structure of the multidrug transporter EmrD from Escherichia coli. Science312, 741–744 (2006) ArticleADSCASPubMedPubMed Central Google Scholar
Dang, S. et al. Structure of a fucose transporter in an outward-open conformation. Nature467, 734–738 (2010) ArticleADSCASPubMed Google Scholar
Newstead, S. et al. Crystal structure of a prokaryotic homologue of the mammalian oligopeptide–proton symporters, PepT1 and PepT2. EMBO J.30, 417–426 (2011) ArticleCASPubMed Google Scholar
Lam, V. M., Daruwalla, K. R., Henderson, P. J. & Jones-Mortimer, M. C. Proton-linked d-xylose transport in Escherichia coli. J. Bacteriol.143, 396–402 (1980) CASPubMedPubMed Central Google Scholar
Davis, E. O., Jones-Mortimer, M. C. & Henderson, P. J. Location of a structural gene for xylose–H+ symport at 91 min on the linkage map of Escherichia coli K12. J. Biol. Chem.259, 1520–1525 (1984) CASPubMed Google Scholar
Davis, E. O. & Henderson, P. J. The cloning and DNA sequence of the gene xylE for xylose–proton symport in Escherichia coli K12. J. Biol. Chem.262, 13928–13932 (1987) CASPubMed Google Scholar
Maiden, M. C., Davis, E. O., Baldwin, S. A., Moore, D. C. & Henderson, P. J. Mammalian and bacterial sugar transport proteins are homologous. Nature325, 641–643 (1987) ArticleADSCASPubMed Google Scholar
Henderson, P. J. Proton-linked sugar transport systems in bacteria. J. Bioenerg. Biomembr.22, 525–569 (1990) ArticleCASPubMed Google Scholar
Screpanti, E. & Hunte, C. Discontinuous membrane helices in transport proteins and their correlation with function. J. Struct. Biol.159, 261–267 (2007) ArticleCASPubMed Google Scholar
Snider, C. & White, S. Membrane Proteins of Known 3D Structure (Stephen H. White Lab., Univ. of California Irvine, 2011) Google Scholar
Ressl, S., Terwisscha van Scheltinga, A. C., Vonrhein, C., Ott, V. & Ziegler, C. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature458, 47–52 (2009) ArticleADSCASPubMed Google Scholar
Gao, X. et al. Mechanism of substrate recognition and transport by an amino acid antiporter. Nature463, 828–832 (2010) ArticleADSCASPubMed Google Scholar
Desai, T. A. & Rao, C. V. Regulation of arabinose and xylose metabolism in Escherichia coli. Appl. Environ. Microbiol.76, 1524–1532 (2010) ArticleCASPubMed Google Scholar
Xiang, Z., Steinbach, P. J., Jacobson, M. P., Friesner, R. A. & Honig, B. Prediction of side-chain conformations on protein surfaces. Proteins66, 814–823 (2007) ArticleCASPubMedPubMed Central Google Scholar
Wang, D. et al. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann. Neurol.57, 111–118 (2005) ArticleCASPubMed Google Scholar
Cunningham, P., Afzal-Ahmed, I. & Naftalin, R. J. Docking studies show that d-glucose and quercetin slide through the transporter GLUT1. J. Biol. Chem.281, 5797–5803 (2006) ArticleCASPubMed Google Scholar
Brockmann, K. et al. Autosomal dominant Glut-1 deficiency syndrome and familial epilepsy. Ann. Neurol.50, 476–485 (2001) ArticleCASPubMed Google Scholar
Ho, Y. Y. et al. Glucose transporter type 1 deficiency syndrome (Glut1DS): methylxanthines potentiate GLUT1 haploinsufficiency in vitro. Pediatr. Res.50, 254–260 (2001) ArticleCASPubMed Google Scholar
Franco, P. J. & Brooker, R. J. Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli. J. Biol. Chem.269, 7379–7386 (1994) CASPubMed Google Scholar
Saier, M. H., Jr, Yen, M. R., Noto, K., Tamang, D. G. & Elkan, C. The Transporter Classification Database: recent advances. Nucleic Acids Res.37, D274–D278 (2009) ArticleCASPubMed Google Scholar
Saier, M. H., Jr, Tran, C. V. & Barabote, R. D. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res.34, D181–D186 (2006) ArticleCASPubMed Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994) ArticleCASPubMedPubMed Central Google Scholar
Felsenstein, J. PHYLIP—Phylogeny Inference Package (version 3.2). Cladistics5, 164–166 (1989) Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997) ArticleCASPubMed Google Scholar
Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994)
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) ArticlePubMed Google Scholar
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst.40, 658–674 (2007) ArticleCAS Google Scholar
Cowtan, K. dm: an automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newsl. Prot. Crystallogr.31, 34–38 (1994) Google Scholar
Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D58, 1948–1954 (2002) ArticlePubMed Google Scholar
Veenhoff, L. M. & Poolman, B. Substrate recognition at the cytoplasmic and extracellular binding site of the lactose transport protein of Streptococcus thermophilus. J. Biol. Chem.274, 33244–33250 (1999) ArticleCASPubMed Google Scholar
Scheich, C., Kummel, D., Soumailakakis, D., Heinemann, U. & Bussow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res.35, e43 (2007) ArticlePubMedPubMed Central Google Scholar