Diversity, stability and resilience of the human gut microbiota (original) (raw)
Candela, M. et al. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int. J. Food Microbiol.125, 286–292 (2008). ArticleCAS Google Scholar
Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature469, 543–547 (2011). ArticleADSCAS Google Scholar
Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science307, 1955–1959 (2005). ArticleADSCAS Google Scholar
Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature486, 222–227 (2012). ArticleADSCAS Google Scholar
Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science336, 489–493 (2012). ArticleADSCAS Google Scholar
Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature444, 1022–1023 (2006). ArticleADSCAS Google Scholar
Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe3, 213–223 (2008). ArticleCAS Google Scholar
Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature474, 327–336 (2011). ArticleCAS Google Scholar
Dicksved, J. et al. Molecular analysis of the gut microbiota of identical twins with Crohn's disease. ISME J.2, 716–727 (2008). ArticleCAS Google Scholar
Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA104, 13780–13785 (2007). ArticleADSCAS Google Scholar
Lupton, J. R. Microbial degradation products influence colon cancer risk: the butyrate controversy. J. Nutr.134, 479–482 (2004). ArticleCAS Google Scholar
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature464, 59–65 (2010). ArticleCAS Google Scholar
The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature486, 207–214 (2012).
Borenstein, E., Kupiec, M., Feldman, M. W. & Ruppin, E. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl Acad. Sci. USA105, 14482–14487 (2008). ArticleADSCAS Google Scholar
Freilich, S. et al. Metabolic-network-driven analysis of bacterial ecological strategies. Genome Biol.10, R61 (2009). Article Google Scholar
Claesson, M. J. et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE4, e6669 (2009). ArticleADS Google Scholar
Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science308, 1635–1638 (2005). ArticleADS Google Scholar
Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature466, 334–338 (2010). ArticleADSCAS Google Scholar
Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature457, 480–484 (2009). ArticleADSCAS Google Scholar
Biagi, E. et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE5, e10667 (2010). ArticleADS Google Scholar
Nelson, K. E. et al. A catalog of reference genomes from the human microbiome. Science328, 994–999 (2010). ArticleCAS Google Scholar
Verberkmoes, N. C. et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J.3, 179–189 (2009). ArticleCAS Google Scholar
Jansson, J. et al. Metabolomics reveals metabolic biomarkers of Crohn's disease. PLoS ONE4, e6386 (2009). ArticleADS Google Scholar
Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science332, 970–974 (2011). ArticleADSCAS Google Scholar
Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA108, 4578–4585 (2011). ArticleADSCAS Google Scholar
Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol.5, e177 (2007). Article Google Scholar
Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA107, 11971–11975 (2010). ArticleADS Google Scholar
Kozyrskyj, A. L., Bahreinian, S. & Azad, M. B. Early life exposures: impact on asthma and allergic disease. Curr. Opin. Allergy Clin. Immunol.11, 400–406 (2011). ArticleCAS Google Scholar
De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA107, 14691–14696 (2010). ArticleADS Google Scholar
Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature473, 174–180 (2011). This paper reports that there is an association between co-occurring microbial groups, and that highPrevotellaversus Bacteroides genus level abundance estimates are associated with major patterns of differentiation in the microbiota across people. ArticleCAS Google Scholar
Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science334, 105–108 (2011). This study found a strong correlation between microbiota diversity and long-term diets as assessed using diet inventories. ArticleADSCAS Google Scholar
Loftus, E. V. Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology126, 1504–1517 (2004). Article Google Scholar
Cann, H. M. et al. A human genome diversity cell line panel. Science296, 261–262 (2002). ArticleCAS Google Scholar
Bach, J. F. & Chatenoud, L. The hygiene hypothesis: an explanation for the increased frequency of insulin-dependent diabetes. Cold Spring Harb. Perspect. Med.2, a007799 (2012). Article Google Scholar
Clayton, T. A., Baker, D., Lindon, J. C., Everett, J. R. & Nicholson, J. K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl Acad. Sci. USA106, 14728–14733 (2009). ArticleADSCAS Google Scholar
Jackson, R. L., Greiwe, J. S. & Schwen, R. J. Emerging evidence of the health benefits of _S_-equol, an estrogen receptor beta agonist. Nutr. Rev.69, 432–448 (2011). Article Google Scholar
Setchell, K. D. & Clerici, C. Equol: history, chemistry, and formation. J. Nutr.140, 1355S–1362S (2010). ArticleCAS Google Scholar
Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol.12, R50 (2011). Article Google Scholar
Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science326, 1694–1697 (2009). ArticleADSCAS Google Scholar
Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA108, 4554–4561 (2011). This paper gives insight into the resilience of the human microbiota in the face of repeated disturbances, and the degree of baseline variation. ArticleADSCAS Google Scholar
Jakobsson, H. E. et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE5, e9836 (2010). ArticleADS Google Scholar
Beisner, B. E., Haydon, D. T. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ.1, 376–382 (2003). Article Google Scholar
Walker, B., Hollin, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc.9, http://www.ecologyandsociety.org/vol9/iss2/art5 (16 September, 2004).
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444, 1027–1031 (2006). ArticleADS Google Scholar
Sun, Y. et al. Advanced computational algorithms for microbial community analysis using massive 16S rRNA sequence data. Nucleic Acids Res.38, e205 (2010). ArticleADS Google Scholar
Knights, D., Parfrey, L. W., Zaneveld, J., Lozupone, C. & Knight, R. Human-associated microbial signatures: examining their predictive value. Cell Host Microbe10, 292–296 (2011). ArticleCAS Google Scholar
Carroll, I. M. et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol.301, G799–G807 (2011). ArticleCAS Google Scholar
Chang, J. Y. et al. Decreased diversity of the fecal microbiome in recurrent _Clostridium difficile_-associated diarrhea. J. Infect. Dis.197, 435–438 (2008). Article Google Scholar
Young, V. B. & Schmidt, T. M. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol.42, 1203–1206 (2004). Article Google Scholar
Willing, B. P. et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology139, 1844–1854 (2010). Article Google Scholar
Swidsinski, A., Loening-Baucke, V. & Herber, A. Mucosal flora in Crohn's disease and ulcerative colitis — an overview. J. Physiol. Pharmacol.60, 61–71 (2009). PubMed Google Scholar
Lozupone, C. et al. Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles in human gut symbionts. Genome Res.http://dx.doi.org/10.1101/gr.138198.112 (4 June, 2012).
Libby, J. M., Donta, S. T. & Wilkins, T. D. Clostridium difficile toxin A in infants. J. Infect. Dis.148, 606 (1983). ArticleCAS Google Scholar
Yamamoto-Osaki, T., Kamiya, S., Sawamura, S., Kai, M. & Ozawa, A. Growth inhibition of Clostridium difficile by intestinal flora of infant faeces in continuous flow culture. J. Med. Microbiol.40, 179–187 (1994). ArticleCAS Google Scholar
Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst.35, 557–581 (2004). Article Google Scholar
Scheffer, M. et al. Floating plant dominance as a stable state. Proc. Natl Acad. Sci. USA100, 4040–4045 (2003). ArticleADSCAS Google Scholar
Hazen, T. C. et al. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science330, 204–208 (2010). ArticleADSCAS Google Scholar
Valentine, D. L. et al. Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc. Natl Acad. Sci. USAhttp://dx.doi.org/10.1073/pnas.1108820109 (10 January, 2012).
Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J.1, 56–66 (2007). ArticleCAS Google Scholar
van der Waaij, D., Berghuis, J. M. & Lekkerkerk, J. E. Colonization resistance of the digestive tract of mice during systemic antibiotic treatment. J. Hyg. (Lond.) 70, 605–610 (1972). ArticleCAS Google Scholar
McNulty, N. P. et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med.3, 106ra106 (2011). Article Google Scholar
Manichanh, C. et al. Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res.20, 1411–1419 (2010). This study indicates that the indigenous microbiota may be more plastic than previously thought. The observation that antibiotic pretreatment interfered with, rather than promoted, establishment of the donor community indicates that low species abundance or diversity alone cannot predict low colonization resistance. ArticleCAS Google Scholar
Levine, J. M. & D'antonio, C. M. Elton revisited: a review of evidence linking diversity and invasibility. Oikos87, 15–26 (1999). Article Google Scholar
Khoruts, A., Dicksved, J., Jansson, J. K. & Sadowsky, M. J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent _Clostridium difficile_-associated diarrhea. J. Clin. Gastroenterol.44, 354–360 (2010). PubMed Google Scholar
Gough, E., Shaikh, H. & Manges, A. R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis.53, 994–1002 (2011). Article Google Scholar
Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science324, 636–638 (2009). ArticleADSCAS Google Scholar
Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ.1, 488–494 (2003). Article Google Scholar
Hansen, E. E. et al. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc. Natl Acad. Sci. USA108, 4599–4606 (2011). ArticleADSCAS Google Scholar
Flint, H. J., Duncan, S. H., Scott, K. P. & Louis, P. Interactions and competition within the microbial community of the human colon: links between diet and health. Environ. Microbiol.9, 1101–1111 (2007). ArticleCAS Google Scholar
Louis, P. et al. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J. Bacteriol.186, 2099–2106 (2004). ArticleCAS Google Scholar
Chaffron, S., Rehrauer, H., Pernthaler, J. & von Mering, C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res.20, 947–959 (2010). ArticleCAS Google Scholar
Stecher, B. et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathogens6, e1000711 (2010). Article Google Scholar
Bever, J. D., Westover, K. M. & Antonovics, J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol.85, 561–573 (1997). Article Google Scholar
Stark, P. L. & Lee, A. The microbial ecology of the large bowel of breast-fed and formula-fed infants during the 1st year of life. J. Med. Microbiol.15, 189–203 (1982). ArticleCAS Google Scholar
Glover, L. E. & Colgan, S. P. Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology140, 1748–1755 (2011). ArticleCAS Google Scholar
Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA108, 6252–6257 (2011). ArticleADSCAS Google Scholar
Dupont, H. L. Gastrointestinal infections and the development of irritable bowel syndrome. Curr. Opin. Infect. Dis.24, 503–508 (2011). Article Google Scholar