Human nutrition, the gut microbiome and the immune system (original) (raw)
Whitacre, P. T., Fagen, A. P., Husbands, J. L. & Sharples, F. E. Implementing the New Biology: Decadal Challenges Linking Food, Energy, and the Environment (National Research Council of The National Academies of Science, 2010). Google Scholar
Muegge, B. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science332, 970–974 (2011). ArticleADSCASPubMedPubMed Central Google Scholar
Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA108, 6252–6257 (2011). This report highlights the use of gnotobiotic mice containing a transplanted human gut microbiome for studying the dynamic interactions between diet and the microbial community. ArticleADSCASPubMedPubMed Central Google Scholar
Bryce, J., Boschi-Pinto, C., Shibuya, K. & Black, R. E. WHO estimates of the causes of death in children. Lancet365, 1147–1152 (2005). ArticlePubMed Google Scholar
Bhutta, Z. A. et al. What works? Interventions for maternal and child undernutrition and survival. Lancet371, 417–440 (2008). ArticlePubMed Google Scholar
Barker, D. J. Adult consequences of fetal growth restriction. Clin. Obstet. Gynecol.49, 270–283 (2006). ArticlePubMed Google Scholar
Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA106, 3698–3703 (2009). ArticleADSCASPubMedPubMed Central Google Scholar
Martin, F. P. et al. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model. Mol. Syst. Biol.4, 157 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Wright, J. D., Kennedy-Stephenson, J., Wang, C. Y., McDowell, M. A. & Johnson, C. L. Trends in intake of energy and macronutrients — United States, 1971–2000. MMWR Morb. Mortal. Wkly Rep.53, 80–82 (2004). Google Scholar
Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science328, 1388–1391 (2010). ArticleADSCASPubMed Google Scholar
Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA108, 4578–4585 (2011). ArticleADSCASPubMed Google Scholar
Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nature Genet.39, 1256–1260 (2007). ArticleCASPubMed Google Scholar
Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature464, 908–912 (2010). ArticleADSCASPubMed Google Scholar
La Cava, A. & Matarese, G. The weight of leptin in immunity. Nature Rev. Immunol.4, 371–379 (2004). ArticleCAS Google Scholar
Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature394, 897–901 (1998). ArticleADSCASPubMed Google Scholar
De Rosa, V. et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity26, 241–255 (2007). ArticleCASPubMed Google Scholar
Guo, X. et al. Leptin signaling in intestinal epithelium mediates resistance to enteric infection by Entamoeba histolytica. Mucosal Immunol.4, 294–303 (2011). This study demonstrates the role of leptin-receptor signalling in protecting the intestinal epithelium against infection and damage by the enteropathogenE. histolytica. ArticleCASPubMed Google Scholar
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444, 1027–1031 (2006). ArticleADSPubMed Google Scholar
Fox, C. J., Hammerman, P. S. & Thompson, C. B. Fuel feeds function: energy metabolism and the T-cell response. Nature Rev. Immunol.5, 844–852 (2005). ArticleCAS Google Scholar
Lupton, J. R. Microbial degradation products influence colon cancer risk: the butyrate controversy. J. Nutr.134, 479–482 (2004). ArticleCASPubMed Google Scholar
Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity9, 229–237 (1998). ArticleCASPubMed Google Scholar
Peng, L., He, Z., Chen, W., Holzman, I. R. & Lin, J. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr. Res.61, 37–41 (2007). ArticleCASPubMed Google Scholar
Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature461, 1282–1286 (2009). ArticleADSCASPubMedPubMed Central Google Scholar
Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature469, 543–547 (2011). References 27 and 28 demonstrate how microbiota-derived short-chain fatty acids help to modulate immune responses and susceptibility to enteropathogen invasion. ArticleADSCASPubMed Google Scholar
Kim, G. W., Gocevski, G., Wu, C. J. & Yang, X. J. Dietary, metabolic, and potentially environmental modulation of the lysine acetylation machinery. Int. J. Cell Biol.2010, 632739 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Nguyen, M. T. et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem.282, 35279–35292 (2007). ArticleCASPubMed Google Scholar
Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440, 228–232 (2006). ArticleADSCASPubMed Google Scholar
Thomson, A. W., Turnquist, H. R. & Raimondi, G. Immunoregulatory functions of mTOR inhibition. Nature Rev. Immunol.9, 324–337 (2009). ArticleCAS Google Scholar
Nakamura, T. et al. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell140, 338–348 (2010). ArticleCASPubMedPubMed Central Google Scholar
Glass, C. K. & Ogawa, S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nature Rev. Immunol.6, 44–55 (2006). ArticleCAS Google Scholar
Esser, C., Rannug, A. & Stockinger, B. The aryl hydrocarbon receptor in immunity. Trends Immunol.30, 447–454 (2009). ArticleCASPubMed Google Scholar
Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol.185, 3190–3198 (2010). ArticleCASPubMed Google Scholar
Platzer, B. et al. Aryl hydrocarbon receptor activation inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells. J. Immunol.183, 66–74 (2009). ArticleCASPubMed Google Scholar
Quintana, F. J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature453, 65–71 (2008). ArticleADSCASPubMed Google Scholar
Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature453, 106–109 (2008). ArticleADSCASPubMed Google Scholar
Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nature Rev. Immunol.5, 641–654 (2005). ArticleCAS Google Scholar
Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev. Immunol.4, 762–774 (2004). ArticleCAS Google Scholar
Munn, D. H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity22, 633–642 (2005). ArticleCASPubMed Google Scholar
Allen, R. H. & Stabler, S. P. Identification and quantitation of cobalamin and cobalamin analogues in human feces. Am. J. Clin. Nutr.87, 1324–1335 (2008). ArticleCASPubMed Google Scholar
Goodman, A. L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe6, 279–289 (2009). ArticleCASPubMedPubMed Central Google Scholar
Anderson, P. J. et al. One pathway can incorporate either adenine or dimethylbenzimidazole as an α-axial ligand of B12 cofactors in Salmonella enterica. J. Bacteriol.190, 1160–1171 (2008). ArticleCASPubMed Google Scholar
Curtale, F., Pokhrel, R. P., Tilden, R. L. & Higashi, G. Intestinal helminths and xerophthalmia in Nepal. A case control study. J. Trop. Pediatr.41, 334–337 (1995). ArticleCASPubMed Google Scholar
Sommer, A., Tarwotjo, I. & Katz, J. Increased risk of xerophthalmia following diarrhea and respiratory disease. Am. J. Clin. Nutr.45, 977–980 (1987). ArticleCASPubMed Google Scholar
Cha, H. R. et al. Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. J. Immunol.184, 6799–6806 (2010). This study shows how a single micronutrient, vitamin A, modulates host immune responses through its effects on the composition of the intestinal microbiota. ArticleCASPubMed Google Scholar
Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity31, 677–689 (2009). References 51 and 52 are seminal studies identifying a single member of the intestinal microbiota that drives the differentiation of intestinal TH17 cells. ArticleCASPubMed Google Scholar
Schaible, U. E. & Kaufmann, S. H. Iron and microbial infection. Nature Rev. Microbiol.2, 946–953 (2004). ArticleCAS Google Scholar
Reddy, B. S., Pleasants, J. R. & Wostmann, B. S. Effect of intestinal microflora on iron and zinc metabolism, and on activities of metalloenzymes in rats. J. Nutr.102, 101–107 (1972). ArticleCASPubMed Google Scholar
Werner, T. et al. Depletion of luminal iron alters the gut microbiota and prevents Crohn's disease-like ileitis. Gut60, 325–333 (2011). ArticleCASPubMed Google Scholar
Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol.26, 5–11 (2010). ArticlePubMed Google Scholar
Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe3, 213–223 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mandard, S. et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem.281, 934–944 (2006). ArticleCASPubMed Google Scholar
Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science328, 228–231 (2010). This paper links changes in the configuration of the intestinal microbiota inTlr5-deficient mice to inflammation and development of metabolic syndrome. ArticleADSCASPubMedPubMed Central Google Scholar
Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol.29, 415–445 (2011). ArticleCASPubMed Google Scholar
Kintscher, U. et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol.28, 1304–1310 (2008). ArticleCASPubMed Google Scholar
Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nature Med.15, 921–929 (2009). ArticleCASPubMed Google Scholar
Zuniga, L. A. et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J. Immunol.185, 6947–6959 (2010). ArticleCASPubMed Google Scholar
Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Med.15, 930–939 (2009). ArticleCASPubMed Google Scholar
Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature389, 610–614 (1997). ArticleADSCASPubMed Google Scholar
Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes56, 1761–1772 (2007). ArticleCASPubMed Google Scholar
Brun, P. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol.292, G518–G525 (2007). ArticleCASPubMed Google Scholar
Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity32, 815–827 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA108, 4615–4622 (2011). ArticleADSCASPubMed Google Scholar
Valm, A. M. et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl Acad. Sci. USA108, 4152–4157 (2011). ArticleADSCASPubMedPubMed Central Google Scholar
Ferreira, R. B., Antunes, L. C. & Finlay, B. B. Should the human microbiome be considered when developing vaccines? PLoS Pathogens6, e1001190 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Campbell, D. I. et al. Chronic T cell-mediated enteropathy in rural west African children: relationship with nutritional status and small bowel function. Pediatr. Res.54, 306–311 (2003). ArticleADSPubMed Google Scholar
Humphrey, J. H. Child undernutrition, tropical enteropathy, toilets, and handwashing. Lancet374, 1032–1035 (2009). This is an excellent review of the relationship between environmental enteropathy and malnutrition. ArticlePubMed Google Scholar
Guerrant, R. L., Oria, R. B., Moore, S. R., Oria, M. O. & Lima, A. A. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr. Rev.66, 487–505 (2008). ArticlePubMed Google Scholar
World Health Organization. Meeting of the immunization Strategic Advisory Group of Experts, April 2009 — conclusions and recommendations. Wkly Epidemiol. Rec.84, 220–236 (2009).
Grassly, N. C. et al. Mucosal immunity after vaccination with monovalent and trivalent oral poliovirus vaccine in India. J. Infect. Dis.200, 794–801 (2009). ArticlePubMed Google Scholar
Lagos, R. et al. Effect of small bowel bacterial overgrowth on the immunogenicity of single-dose live oral cholera vaccine CVD 103-HgR. J. Infect. Dis.180, 1709–1712 (1999). ArticleCASPubMed Google Scholar
Nemes, E. et al. Gluten intake interferes with the humoral immune response to recombinant hepatitis B vaccine in patients with celiac disease. Pediatrics121, e1570–e1576 (2008). ArticlePubMed Google Scholar
Menendez-Corrada, R., Nettleship, E. & Santiago-Delpin, E. A. HLA and tropical sprue. Lancet2, 1183–1185 (1986). ArticleCASPubMed Google Scholar
Ghoshal, U. C. et al. Tropical sprue is associated with contamination of small bowel with aerobic bacteria and reversible prolongation of orocecal transit time. J. Gastroenterol. Hepatol.18, 540–547 (2003). ArticlePubMed Google Scholar
Hayes, K. S. et al. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science328, 1391–1394 (2010). This study demonstrates the co-evolution of bacterial and eukaryotic components of the microbiota and its effect on host immunity. ArticleADSCASPubMedPubMed Central Google Scholar
Faith, J. J., McNulty, N. P., Rey, F. E. & Gordon, J. I. Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science doi:10.1126/science.1206025 (19 May 2011).
Gaboriau-Routhiau, V., Raibaud, P., Dubuquoy, C. & Moreau, M. C. Colonization of gnotobiotic mice with human gut microflora at birth protects against Escherichia coli heat-labile enterotoxin-mediated abrogation of oral tolerance. Pediatr. Res.54, 739–746 (2003). ArticlePubMed Google Scholar
Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell122, 107–118 (2005). ArticleCASPubMed Google Scholar
Liu, G., Yang, K., Burns, S., Shrestha, S. & Chi, H. The S1P1-mTOR axis directs the reciprocal differentiation of TH1 and Treg cells. Nature Immunol.11, 1047–1056 (2010). ArticleCAS Google Scholar
Procaccini, C. et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity33, 929–941 (2010). ArticleCASPubMedPubMed Central Google Scholar
Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity21, 527–538 (2004). ArticleCASPubMed Google Scholar
Siddiqui, K. R. & Powrie, F. CD103+ GALT DCs promote Foxp3+ regulatory T cells. Mucosal Immunol.1, S34–S38 (2008). ArticleCASPubMed Google Scholar
Ertesvag, A., Engedal, N., Naderi, S. & Blomhoff, H. K. Retinoic acid stimulates the cell cycle machinery in normal T cells: involvement of retinoic acid receptor-mediated IL-2 secretion. J. Immunol.169, 5555–5563 (2002). ArticleCASPubMed Google Scholar
Iwata, M., Eshima, Y. & Kagechika, H. Retinoic acids exert direct effects on T cells to suppress Th1 development and enhance Th2 development via retinoic acid receptors. Int. Immunol.15, 1017–1025 (2003). ArticleCASPubMed Google Scholar
Lemire, J. M., Adams, J. S., Sakai, R. & Jordan, S. C. 1α,25-dihydroxyvitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J. Clin. Invest.74, 657–661 (1984). ArticleCASPubMedPubMed Central Google Scholar
Mora, J. R., Iwata, M. & von Andrian, U. H. Vitamin effects on the immune system: vitamins A and D take centre stage. Nature Rev. Immunol.8, 685–698 (2008). ArticleCAS Google Scholar
Daniel, C., Sartory, N. A., Zahn, N., Radeke, H. H. & Stein, J. M. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J. Pharmacol. Exp. Ther.324, 23–33 (2008). ArticleCASPubMed Google Scholar
Wang, T. T. et al. 1,25-Dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol.173, 2909–2912 (2004). ArticleCASPubMed Google Scholar
Sigmundsdottir, H. et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27. Nature Immunol.8, 285–293 (2007). ArticleCAS Google Scholar
Oh, D. Y. et al. GPR120 is an ω-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell142, 687–698 (2010). ArticleCASPubMedPubMed Central Google Scholar