A T-bet gradient controls the fate and function of CCR6−RORγt+ innate lymphoid cells (original) (raw)
Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Rev. Immunol.10, 159–169 (2010) CAS Google Scholar
Spits, H. & Cupedo, T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol.30, 647–675 (2012) CASPubMed Google Scholar
Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunol.10, 83–91 (2009) CASADS Google Scholar
Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity29, 958–970 (2008) CASPubMed Google Scholar
Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nature Immunol.10, 75–82 (2009) CAS Google Scholar
Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science330, 665–669 (2010) CASPubMedADS Google Scholar
Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity33, 736–751 (2010) CASPubMedPubMed Central Google Scholar
Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science334, 1561–1565 (2011) CASPubMedADS Google Scholar
Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature457, 722–725 (2009) CASPubMedADS Google Scholar
Songhet, P. et al. Stromal IFN-γR-signaling modulates goblet cell function during Salmonella Typhimurium infection. PLoS ONE6, e22459 (2011) CASPubMedPubMed CentralADS Google Scholar
Rhee, S. J., Walker, W. A. & Cherayil, B. J. Developmentally regulated intestinal expression of IFN-γ and its target genes and the age-specific response to enteric Salmonella infection. J. Immunol.175, 1127–1136 (2005) CASPubMed Google Scholar
Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonellaenterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun.71, 2839–2858 (2003) CASPubMedPubMed Central Google Scholar
Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nature Immunol.10, 66–74 (2009) CAS Google Scholar
Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nature Immunol.13, 144–151 (2011) Google Scholar
Sanos, S. L., Vonarbourg, C., Mortha, A. & Diefenbach, A. Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells. Immunology132, 453–465 (2011) CASPubMedPubMed Central Google Scholar
Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature464, 1371–1375 (2010) CASPubMedPubMed CentralADS Google Scholar
Oestreich, K. J. & Weinmann, A. S. Transcriptional mechanisms that regulate T helper 1 cell differentiation. Curr. Opin. Immunol.24, 191–195 (2012) CASPubMedPubMed Central Google Scholar
Lazarevic, V. & Glimcher, L. H. T-bet in disease. Nature Immunol.12, 597–606 (2011) CAS Google Scholar
Gordon, S. M. et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity36, 55–67 (2012) CASPubMedPubMed Central Google Scholar
Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science295, 338–342 (2002) CASPubMedADS Google Scholar
Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA107, 10961–10966 (2010) CASADS Google Scholar
Crellin, N. K. et al. Regulation of cytokine secretion in human CD127+ LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity33, 752–764 (2010) CAS Google Scholar
Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med.14, 282–289 (2008) CASPubMed Google Scholar
Sonnenberg, G. F., Monticelli, L. A., Elloso, M. M., Fouser, L. A. & Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity34, 122–134 (2011) CASPubMed Google Scholar
Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science313, 1126–1130 (2006) CASPubMedPubMed CentralADS Google Scholar
Garrett, W. S. et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell131, 33–45 (2007) CASPubMedPubMed Central Google Scholar
Awoniyi, M., Miller, S. I., Wilson, C. B., Hajjar, A. M. & Smith, K. D. Homeostatic regulation of Salmonella-induced mucosal inflammation and injury by IL-23. PLoS ONE7, e37311 (2012) CASPubMedPubMed CentralADS Google Scholar
Klose, C. S., Hoyler, T., Kiss, E. A., Tanriver, Y. & Diefenbach, A. Transcriptional control of innate lymphocyte fate decisions. Curr. Opin. Immunol.24, 290–296 (2012) CASPubMed Google Scholar
Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nature Immunol.12, 255–263 (2011) CAS Google Scholar
Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nature Immunol.http://dx.doi.org/10.1038/ni.2534 (in the press).
Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nature Immunol.5, 64–73 (2004) CAS Google Scholar
Eberl, G. & Littman, D. R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science305, 248–251 (2004) CASPubMedADS Google Scholar
Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol.1, 4 (2001) CASPubMedPubMed Central Google Scholar
Schmidt, J. V., Su, G. H., Reddy, J. K., Simon, M. C. & Bradfield, C. A. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl Acad. Sci. USA93, 6731–6736 (1996) CASPubMedADS Google Scholar
Wu, C. et al. IL-12 receptor β2 (IL-12R β2)-deficient mice are defective in IL-12-mediated signaling despite the presence of high affinity IL-12 binding sites. J. Immunol.165, 6221–6228 (2000) CASPubMed Google Scholar
Ghilardi, N. et al. Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J. Immunol.172, 2827–2833 (2004) CASPubMed Google Scholar
Kurschus, F. C. et al. Genetic proof for the transient nature of the Th17 phenotype. Eur. J. Immunol.40, 3336–3346 (2010) CASPubMed Google Scholar
Croxford, A. L., Kurschus, F. C. & Waisman, A. Cutting edge: an IL-17F-CreEYFP reporter mouse allows fate mapping of Th17 cells. J. Immunol.182, 1237–1241 (2009) CASPubMed Google Scholar
Hou, B., Reizis, B. & DeFranco, A. L. Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity29, 272–282 (2008) CASPubMedPubMed Central Google Scholar
Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature382, 174–177 (1996) CASPubMedADS Google Scholar
Conrad, M. L. et al. Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J. Exp. Med.206, 2869–2877 (2009) CASPubMedPubMed Central Google Scholar
Salzman, N. H. et al. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology148, 3651–3660 (2002) CASPubMed Google Scholar
Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunol.11, 76–82 (2010) CAS Google Scholar