Transcriptome and genome sequencing uncovers functional variation in humans (original) (raw)

Accession codes

Accessions

ArrayExpress

Data deposits

The Geuvadis RNA-sequencing data, genotype data, variant annotations, splice scores, quantifications, and QTL results are freely and openly available with no restrictions. The main portal for accessing the data is EBI ArrayExpress, under accessions E-GEUV-1, E-GEUV-2 and E-GEUV-3 (see the data access schema in Supplementary Fig. 39). For visualization of the results we created the Geuvadis Data Browser (http://www.ebi.ac.uk/Tools/geuvadis-das) where quantifications and QTLs can be viewed, searched and downloaded (Supplementary Fig. 40). The project webpage (http://www.geuvadis.org) provides full documentation and links to all files, and the analysis group wiki is open to the public (http://geuvadiswiki.crg.es).

References

  1. Abecasis, G. R. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012)
    Article ADS Google Scholar
  2. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007)
  3. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012)
    Article CAS ADS Google Scholar
  4. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008)
    Article CAS ADS Google Scholar
  5. Stranger, B. E. et al. Population genomics of human gene expression. Nature Genet. 39, 1217–1224 (2007)
    Article CAS Google Scholar
  6. Grundberg, E. et al. Mapping _cis_- and _trans_-regulatory effects across multiple tissues in twins. Nature Genet. 44, 1084–1089 (2012)
    Article CAS Google Scholar
  7. Montgomery, S. B. et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464, 773–777 (2010)
    Article CAS ADS Google Scholar
  8. Pickrell, J. K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464, 768–772 (2010)
    Article CAS ADS Google Scholar
  9. Nica, A. C. et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet. 6, e1000895 (2010)
    Article Google Scholar
  10. Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 6, e1000888 (2010)
    Article Google Scholar
  11. Hoen, P. A. C. et al. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nature Biotech http://dx.doi.org/10.1038/nbt.2702 (in the press)
  12. Gonzalez-Porta, M., Calvo, M., Sammeth, M. & Guigo, R. Estimation of alternative splicing variability in human populations. Genome Res. 22, 528–538 (2012)
    Article CAS Google Scholar
  13. Merkin, J., Russell, C., Chen, P. & Burge, C. B. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593–1599 (2013)
    Article ADS Google Scholar
  14. Barbosa-Morais, N. L. et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587–1593 (2012)
    Article CAS ADS Google Scholar
  15. Parts, L. et al. Extent, causes, and consequences of small RNA expression variation in human adipose tissue. PLoS Genet 8, e1002704 (2012)
    Article CAS Google Scholar
  16. Xiao, C. & Rajewsky, K. MicroRNA control in the immune system: basic principles. Cell 136, 26–36 (2009)
    Article CAS Google Scholar
  17. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012)
    Article CAS Google Scholar
  18. Pickrell, J. K., Pai, A. A., Gilad, Y. & Pritchard, J. K. Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet. 6, e1001236 (2010)
    Article Google Scholar
  19. Lee, Y. et al. Variants affecting exon skipping contribute to complex traits. PLoS Genet. 8, e1002998 (2012)
    Article CAS Google Scholar
  20. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012)
    Article CAS ADS Google Scholar
  21. Cordaux, R. & Batzer, M. A. The impact of retrotransposons on human genome evolution. Nature Rev. Genet. 10, 691–703 (2009)
    Article CAS Google Scholar
  22. Veyrieras, J. B. et al. High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet. 4, e1000214 (2008)
    Article Google Scholar
  23. Gaffney, D. J. et al. Dissecting the regulatory architecture of gene expression QTLs. Genome Biol. 13, R7 (2012)
    Article CAS Google Scholar
  24. McDaniell, R. et al. Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328, 235–239 (2010)
    Article CAS ADS Google Scholar
  25. Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012)
    Article CAS ADS Google Scholar
  26. Hindorff, L. A., Junkins, H. A., Hall, P. N., Mehta, J. P. & Manolio, T. A. A Catalog of Published Genome-Wide Association Studies; available at http://www.genome.gov/gwastudies (accessed 11 September 2012)
  27. O’Seaghdha, C. M. et al. Common variants in the calcium-sensing receptor gene are associated with total serum calcium levels. Hum. Mol. Genet. 19, 4296–4303 (2010)
    Article Google Scholar
  28. MacArthur, D. G. et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335, 823–828 (2012)
    Article CAS ADS Google Scholar
  29. Nagy, E. & Maquat, L. E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci. 23, 198–199 (1998)
    Article CAS Google Scholar
  30. Montgomery, S. B., Lappalainen, T., Gutierrez-Arcelus, M. & Dermitzakis, E. T. Rare and common regulatory variation in population-scale sequenced human genomes. PLoS Genet. 7, e1002144 (2011)
    Article CAS Google Scholar
  31. Marco-Sola, S., Sammeth, M., Guigo, R. & Ribeca, P. The GEM mapper: fast, accurate and versatile alignment by filtration. Nature Methods 9, 1185–1188 (2012)
    Article CAS Google Scholar
  32. Pantano, L., Estivill, X. & Marti, E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res. 38, e34 (2010)
    Article Google Scholar
  33. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012)
    Article CAS Google Scholar
  34. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011)
    Article CAS Google Scholar
  35. Stegle, O., Parts, L., Durbin, R. & Winn, J. A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLOS Comput. Biol. 6 e1000770 10.1371/journal.pcbi.1000770 (2010)

Download references

Acknowledgements

We would like to thank E. Falconnet, L. Romano, A. Planchon, D. Bielsen, A. Yurovsky, A. Buil, J. Bryois, A. Nica, I. Topolsky, N. Fusi, S. Waszak, C. Bustamante, J. Rung, N. Kolesnikov, A. Roa, E. Bragin, S. Brent, J. Gonzalez, M. Morell, A. Puig, E. Palumbo, M. Ventayol Garcia, J. F. J. Laros, J. Blanc, R. Birkelund, G. Plaja, M. Ingham, J. Camps, M. Bayes, L. Agueda, A. Gouin, M.-L. Yaspo, E. Graf, A. Walther, C. Fischer, S. Loesecke, B. Schmick, D. Balzereit, S. Dökel, M. Linser, A. Kovacsovics, M. Friskovec, C. von der Lancken, M. Schlapkohl, A. Hellmann, M. Schilhabel, the SNP&SEQ Technology Platform in Uppsala, S. Sauer, the Vital-IT high-performance computing centre of the SIB Swiss Institute of Bioinformatics, B. Goldstein and others at the Coriell Institute, and J. Cooper, E. Burnett, K. Ball and others at the European Collection of Cell Cultures (ECACC) and the 1000 Genomes Consortium. This project was funded by the European Commission 7th Framework Program (FP7) (261123; GEUVADIS); the Swiss National Science Foundation (130326, 130342), the Louis Jeantet Foundation, and ERC (260927) (E.T.D.); NIH-NIMH (MH090941) (E.T.D., M.I.M., R.G.); Spanish Plan Nacional SAF2008-00357 (NOVADIS), the Generalitat de Catalunya AGAUR 2009 SGR-1502, and the Instituto de Salud Carlos III (FIS/FEDER PI11/00733) (X.E.); Spanish Plan Nacional (BIO2011-26205) and ERC (294653) (R.G.); ESGI, READNA (FP7 Health-F4-2008-201418), Spanish Ministry of Economy and Competitiveness (MINECO) and the Generalitat de Catalunya (I.G.G.); DFG Cluster of Excellence Inflammation at Interfaces, the INTERREG4A project HIT-ID, and the BMBF IHEC project DEEP SP 2.3 (P.Ro.); German Centre for Cardiovascular Research (DZHK) and the German Ministry of Education and Research (01GR0802, 01GM0867, 01GR0804, 16EX1020C) (T.M.); EurocanPlatform (FP7 260791), ENGAGE and CAGEKID (241669) (A.B.); FP7/2007-2013, ENGAGE project, HEALTH-F4-2007-201413, and the Centre for Medical Systems Biology within the framework of The Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific and Research (NWO) (P.AC.H and G.-J.v.O.); The Swedish Research Council (C0524801, A028001) and the Knut and Alice Wallenberg Foundation (2011.0073) (A.-C.S.); The Swiss National Science Foundation (127375, 144082) and ERC (249968) (S.E.A.); Instituto de Salud Carlos III (FIS/FEDER PS09/02368) (A.C.); German Federal Ministry of Education and Research (01GS08201) (R.S.); Max Planck Society (H.L.); Wellcome Trust (WT085532) and the European Molecular Biology Laboratory (P.F.); ENGAGE, Wellcome Trust (081917, 090367, 090532, 098381), and Medical Research Council UK (G0601261) (M.I.M.); Wellcome Trust Centre for Human Genetics (090532/Z/09/Z, 075491/Z/04/B), Wellcome Trust (098381, 090367, 076113, 083270), the WTCCC2 project (085475/B/08/Z, 085475/Z/08/Z), Royal Society Wolfson Merit Award, Wellcome Trust Senior Investigator Award (095552/Z/11/Z) (P.D.); EMBO long-term fellowship EMBO-ALTF 2010-337 (H.K.); NIH-NIGMS (R01 GM104371) (D.G.M.); Marie Curie FP7 fellowship (O.S.); Scholarship by the Clarendon Fund of the University of Oxford, and the Nuffield Department of Medicine (M.A.R.); EMBO long-term fellowship ALTF 225-2011 (M.R.F.); Emil Aaltonen Foundation and Academy of Finland fellowships (T.L.).

Author information

Author notes

  1. Michael Sammeth, Stephen B. Montgomery & Ralf Sudbrak
    Present address: Present addresses: Bioinformatics Laboratory, National Laboratory of Scientific Computing (LNCC), Petropolis 25651-075, Rio de Janeiro, Brazil (M.S.); Departments of Pathology and Genetics, Stanford University, Stanford, California 94305-5324, USA (S.B.M.); Alacris Theranostics GmbH, 14195 Berlin, Germany (R.S.).,
  2. Michael Sammeth, Marc R. Friedländer, Peter A. C. ‘t Hoen, Jean Monlong and Manuel A. Rivas: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland,
    Tuuli Lappalainen, Thomas Giger, Ismael Padioleau, Halit Ongen, Helena Kilpinen, Stephen B. Montgomery, Stylianos E. Antonarakis & Emmanouil T. Dermitzakis
  2. Institute for Genetics and Genomics in Geneva (iG3), University of Geneva, 1211 Geneva, Switzerland,
    Tuuli Lappalainen, Ismael Padioleau, Halit Ongen, Helena Kilpinen, Stylianos E. Antonarakis & Emmanouil T. Dermitzakis
  3. Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland,
    Tuuli Lappalainen, Ismael Padioleau, Halit Ongen, Helena Kilpinen & Emmanouil T. Dermitzakis
  4. Centro Nacional de Análisis Genómico, 08028 Barcelona, Catalonia, Spain,
    Michael Sammeth, Thasso Griebel, Paolo Ribeca, Sergi Beltran, Marta Gut, Katja Kahlem & Ivo G. Gut
  5. Centre for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain,
    Michael Sammeth, Marc R. Friedländer, Jean Monlong, Pedro G. Ferreira, Gabrielle Bertier, Esther Lizano, Roderic Guigó & Xavier Estivill
  6. Pompeu Fabra University (UPF), 08003 Barcelona, Catalonia, Spain,
    Michael Sammeth, Marc R. Friedländer, Jean Monlong, Pedro G. Ferreira, Gabrielle Bertier, Esther Lizano, Roderic Guigó & Xavier Estivill
  7. CRG Hospital del Mar Research Institute, 08003 Barcelona, Catalonia, Spain,
    Michael Sammeth, Marc R. Friedländer, Jean Monlong, Pedro G. Ferreira, Esther Lizano, Roderic Guigó & Xavier Estivill
  8. CRG CIBERESP, 08003 Barcelona, Catalonia, Spain,
    Marc R. Friedländer, Esther Lizano & Xavier Estivill
  9. Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands,
    Peter A. C. ‘t Hoen, Maarten van Iterson, Irina Pulyakhina, Henk P. J. Buermans & Gert-Jan van Ommen
  10. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK,
    Manuel A. Rivas, Matti Pirinen, Peter Donnelly & Mark I. McCarthy
  11. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK,
    Mar Gonzàlez-Porta, Natalja Kurbatova, Liliana Greger, Andrew Tikhonov, Oliver Stegle, Paul Flicek & Alvis Brazma
  12. Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, D-24105 Kiel, Germany,
    Matthias Barann, Daniela Esser, Stefan Schreiber, Robert Häsler & Philip Rosenstiel
  13. Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany,
    Thomas Wieland, Thomas Schwarzmayr, Tim M. Strom & Thomas Meitinger
  14. Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden,
    Jonas Almlöf, Olof Karlberg & Ann-Christine Syvänen
  15. Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany,
    Marc Sultan, Vyacheslav Amstislavskiy, Hans Lehrach & Ralf Sudbrak
  16. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, 02114, Massachusetts, USA
    Daniel G. MacArthur & Monkol Lek
  17. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, 02142, Massachusetts, USA
    Daniel G. MacArthur & Monkol Lek
  18. Leiden Genome Technology Center, 2300 RC Leiden, the Netherlands,
    Henk P. J. Buermans
  19. Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford OX3 7BN, UK,
    Mark I. McCarthy
  20. Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany,
    Tim M. Strom & Thomas Meitinger
  21. Dahlem Centre for Genome Research and Medical Systems Biology, 14195 Berlin, Germany,
    Hans Lehrach & Ralf Sudbrak
  22. Fundacion Publica Galega de Medicina Xenomica (SERGAS), Genomic Medicine Group, CIBERER, Universidade de Santiago de Compostela, Santiago de Compostela, Spain,
    Ángel Carracedo
  23. Deutsches Forschungszentrum für Herz-Kreislauferkrankungen (DZHK), Partner Site Munich Heart Alliance, 81675 Munich, Germany,
    Thomas Meitinger

Authors

  1. Tuuli Lappalainen
    You can also search for this author inPubMed Google Scholar
  2. Michael Sammeth
    You can also search for this author inPubMed Google Scholar
  3. Marc R. Friedländer
    You can also search for this author inPubMed Google Scholar
  4. Peter A. C. ‘t Hoen
    You can also search for this author inPubMed Google Scholar
  5. Jean Monlong
    You can also search for this author inPubMed Google Scholar
  6. Manuel A. Rivas
    You can also search for this author inPubMed Google Scholar
  7. Mar Gonzàlez-Porta
    You can also search for this author inPubMed Google Scholar
  8. Natalja Kurbatova
    You can also search for this author inPubMed Google Scholar
  9. Thasso Griebel
    You can also search for this author inPubMed Google Scholar
  10. Pedro G. Ferreira
    You can also search for this author inPubMed Google Scholar
  11. Matthias Barann
    You can also search for this author inPubMed Google Scholar
  12. Thomas Wieland
    You can also search for this author inPubMed Google Scholar
  13. Liliana Greger
    You can also search for this author inPubMed Google Scholar
  14. Maarten van Iterson
    You can also search for this author inPubMed Google Scholar
  15. Jonas Almlöf
    You can also search for this author inPubMed Google Scholar
  16. Paolo Ribeca
    You can also search for this author inPubMed Google Scholar
  17. Irina Pulyakhina
    You can also search for this author inPubMed Google Scholar
  18. Daniela Esser
    You can also search for this author inPubMed Google Scholar
  19. Thomas Giger
    You can also search for this author inPubMed Google Scholar
  20. Andrew Tikhonov
    You can also search for this author inPubMed Google Scholar
  21. Marc Sultan
    You can also search for this author inPubMed Google Scholar
  22. Gabrielle Bertier
    You can also search for this author inPubMed Google Scholar
  23. Daniel G. MacArthur
    You can also search for this author inPubMed Google Scholar
  24. Monkol Lek
    You can also search for this author inPubMed Google Scholar
  25. Esther Lizano
    You can also search for this author inPubMed Google Scholar
  26. Henk P. J. Buermans
    You can also search for this author inPubMed Google Scholar
  27. Ismael Padioleau
    You can also search for this author inPubMed Google Scholar
  28. Thomas Schwarzmayr
    You can also search for this author inPubMed Google Scholar
  29. Olof Karlberg
    You can also search for this author inPubMed Google Scholar
  30. Halit Ongen
    You can also search for this author inPubMed Google Scholar
  31. Helena Kilpinen
    You can also search for this author inPubMed Google Scholar
  32. Sergi Beltran
    You can also search for this author inPubMed Google Scholar
  33. Marta Gut
    You can also search for this author inPubMed Google Scholar
  34. Katja Kahlem
    You can also search for this author inPubMed Google Scholar
  35. Vyacheslav Amstislavskiy
    You can also search for this author inPubMed Google Scholar
  36. Oliver Stegle
    You can also search for this author inPubMed Google Scholar
  37. Matti Pirinen
    You can also search for this author inPubMed Google Scholar
  38. Stephen B. Montgomery
    You can also search for this author inPubMed Google Scholar
  39. Peter Donnelly
    You can also search for this author inPubMed Google Scholar
  40. Mark I. McCarthy
    You can also search for this author inPubMed Google Scholar
  41. Paul Flicek
    You can also search for this author inPubMed Google Scholar
  42. Tim M. Strom
    You can also search for this author inPubMed Google Scholar
  43. Hans Lehrach
    You can also search for this author inPubMed Google Scholar
  44. Stefan Schreiber
    You can also search for this author inPubMed Google Scholar
  45. Ralf Sudbrak
    You can also search for this author inPubMed Google Scholar
  46. Ángel Carracedo
    You can also search for this author inPubMed Google Scholar
  47. Stylianos E. Antonarakis
    You can also search for this author inPubMed Google Scholar
  48. Robert Häsler
    You can also search for this author inPubMed Google Scholar
  49. Ann-Christine Syvänen
    You can also search for this author inPubMed Google Scholar
  50. Gert-Jan van Ommen
    You can also search for this author inPubMed Google Scholar
  51. Alvis Brazma
    You can also search for this author inPubMed Google Scholar
  52. Thomas Meitinger
    You can also search for this author inPubMed Google Scholar
  53. Philip Rosenstiel
    You can also search for this author inPubMed Google Scholar
  54. Roderic Guigó
    You can also search for this author inPubMed Google Scholar
  55. Ivo G. Gut
    You can also search for this author inPubMed Google Scholar
  56. Xavier Estivill
    You can also search for this author inPubMed Google Scholar
  57. Emmanouil T. Dermitzakis
    You can also search for this author inPubMed Google Scholar

Consortia

The Geuvadis Consortium

Contributions

Designed the study: T.L., T.Gi., S.B.M., P.AC.H., E.L., H.L., S.S., R.S., A.C., S.E.A., R.H., A.-C.S., G.-J.v.O., A.B., T.M., P.Ro., R.G., I.G.G., X.E. and E.T.D. Coordinated the project: T.L., T.Gi., G.B., X.E. and E.T.D. Participated in data production: T.L., T.Gi., I.Pa., M.Su., E.L., S.B., M.G., V.A., K.K., D.E., P.Ri. and O.K. Analysed the data: T.L., M.Sa., M.R.F., P.A.C.H., J.M., M.A.R., M.G.-P., N.K., T.Gr., P.G.F., M.B., T.W., L.G., M.v.I., J.A., P.Ri., I.Pu., D.E., A.T., M.Su., D.G.M., M.L., E.L., H.P.J.B., I.Pa., T.S., O.K., H.O., H.K., S.B., M.G., K.K., V.A., O.S., M.P., P.D., M.I.M., P.F. and T.M.S. Drafted the paper: T.L. and E.T.D. See Supplementary Note for Members of the Geuvadis Consortium.

Corresponding authors

Correspondence toTuuli Lappalainen or Emmanouil T. Dermitzakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A list of authors and their affiliations appears in the Supplementary Information.

Supplementary information

Supplementary Information

This file contains a Supplementary Note, Supplementary Figures 1-40, Supplementary Methods, Supplementary Tables 1-3 and 6, and full legends for Supplementary Tables 4-5 – see contents page for details. (PDF 4935 kb)

Supplementary Data

This file contains Supplementary Table 4 showing miRNA-mRNA correlations and Supplementary Table 5 showing Top eQTL variants for 91 GWAS SNPs. (XLSX 118 kb)

PowerPoint slides

Rights and permissions

About this article

Cite this article

Lappalainen, T., Sammeth, M., Friedländer, M. et al. Transcriptome and genome sequencing uncovers functional variation in humans.Nature 501, 506–511 (2013). https://doi.org/10.1038/nature12531

Download citation