X-ray structure of dopamine transporter elucidates antidepressant mechanism (original) (raw)
Jessell, T. M. & Kandel, E. R. Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell72 (Suppl). 1–30 (1993) Article Google Scholar
Masson, J., Sagne, C., Hamon, M. & El Mestikawy, S. Neurotransmitter transporters in the central nervous system. Pharmacol. Rev.51, 439–464 (1999) CASPubMed Google Scholar
Kristensen, A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev.63, 585–640 (2011) ArticleCAS Google Scholar
Rudnick, G. Ion-coupled neurotransmitter transport: thermodynamic vs. kinetic determinations of stoichiometry. Methods Enzymol.296, 233–247 (1998) ArticleCAS Google Scholar
Radian, R., Bendahan, A. & Kanner, B. I. Purification and identification of the functional sodium- and chloride-coupled γ-aminobutyric acid transport glycoprotein from rat brain. J. Biol. Chem.261, 15437–15441 (1986) CASPubMed Google Scholar
Waldman, I. D. et al. Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity. Am. J. Hum. Genet.63, 1767–1776 (1998) ArticleCAS Google Scholar
Shannon, J. R. et al. Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N. Engl. J. Med.342, 541–549 (2000) ArticleCAS Google Scholar
Meldrum, B. S. Neurotransmission in epilepsy. Epilepsia36 (suppl. 1). 30–35 (1995) Article Google Scholar
Kurian, M. A. et al. Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J. Clin. Invest.119, 1595–1603 (2009) CASPubMedPubMed Central Google Scholar
Kuhn, R. The treatment of depressive states with G 22355 (imipramine hydrochloride). Am. J. Psychiatry115, 459–464 (1958) ArticleCAS Google Scholar
Axelrod, J., Whitby, L. G. & Hertting, G. Effect of psychotropic drugs on the uptake of H3-norepinephrine by tissues. Science133, 383–384 (1961) ArticleADSCAS Google Scholar
Berton, O. & Nestler, E. J. New approaches to antidepressant drug discovery: beyond monoamines. Nature Rev. Neurosci.7, 137–151 (2006) ArticleCAS Google Scholar
Pletscher, A. The discovery of antidepressants: a winding path. Experientia47, 4–8 (1991) ArticleCAS Google Scholar
Anderson, I. M. Selective serotonin reuptake inhibitors versus tricyclic antidepressants: a meta-analysis of efficacy and tolerability. J. Affect. Disord.58, 19–36 (2000) ArticleCAS Google Scholar
Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl–-dependent neurotransmitter transporters. Nature437, 215–223 (2005) ArticleADSCAS Google Scholar
Singh, S. K., Piscitelli, C. L., Yamashita, A. & Gouaux, E. A competitive inhibitor traps LeuT in an open-to-out conformation. Science322, 1655–1661 (2008) ArticleADSCAS Google Scholar
Krishnamurthy, H. & Gouaux, E. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature481, 469–474 (2012) ArticleADSCAS Google Scholar
Beuming, T. et al. The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nature Neurosci.11, 780–789 (2008) ArticleCAS Google Scholar
Sørensen, L. et al. Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J. Biol. Chem.287, 43694–43707 (2012) Article Google Scholar
Pörzgen, P., Park, S. K., Hirsh, J., Sonders, M. S. & Amara, S. G. The antidepressant-sensitive dopamine transporter in Drosophila melanogaster: a primordial carrier for catecholamines. Mol. Pharmacol.59, 83–95 (2001) Article Google Scholar
Serrano-Vega, M. J., Magnani, F., Shibata, Y. & Tate, C. G. Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. Proc. Natl Acad. Sci. USA105, 877–882 (2008) ArticleADSCAS Google Scholar
Tatsumi, M., Groshan, K., Blakely, R. D. & Richelson, E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur. J. Pharmacol.340, 249–258 (1997) ArticleCAS Google Scholar
Torres, G. E. et al. Oligomerization and trafficking of the human dopamine transporter. Mutational analysis identifies critical domains important for the functional expression of the transporter. J. Biol. Chem.278, 2731–2739 (2003) ArticleCAS Google Scholar
Sitte, H. H., Farhan, H. & Javitch, J. A. Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. Mol. Interv.4, 38–47 (2004) ArticleCAS Google Scholar
Li, L. B. et al. The role of _N_-glycosylation in function and surface trafficking of the human dopamine transporter. J. Biol. Chem.279, 21012–21020 (2004) ArticleCAS Google Scholar
Chen, R. et al. Direct evidence that two cysteines in the dopamine transporter form a disulfide bond. Mol. Cell. Biochem.298, 41–48 (2007) ArticleCAS Google Scholar
Norregaard, L., Frederiksen, D., Nielsen, E. O. & Gether, U. Delineation of an endogenous zinc-binding site in the human dopamine transporter. EMBO J.17, 4266–4273 (1998) ArticleCAS Google Scholar
Buck, K. J. & Amara, S. G. Structural domains of catecholamine transporter chimeras involved in selective inhibition by antidepressants and psychomotor stimulants. Mol. Pharmacol.48, 1030–1037 (1995) CASPubMed Google Scholar
Chen, J. G., Sachpatzidis, A. & Rudnick, G. The third transmembrane domain of the serotonin transporter contains residues associated with substrate and cocaine binding. J. Biol. Chem.272, 28321–28327 (1997) ArticleCAS Google Scholar
Henry, L. K. et al. Tyr-95 and Ile-172 in transmembrane segments 1 and 3 of human serotonin transporters interact to establish high affinity recognition of antidepressants. J. Biol. Chem.281, 2012–2023 (2006) ArticleCAS Google Scholar
Bismuth, Y., Kavanaugh, M. P. & Kanner, B. I. Tyrosine 140 of the γ-aminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. J. Biol. Chem.272, 16096–16102 (1997) ArticleCAS Google Scholar
Kitayama, S. et al. Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc. Natl Acad. Sci. USA89, 7782–7785 (1992) ArticleADSCAS Google Scholar
Andersen, J. et al. Location of the antidepressant binding site in the serotonin transporter: importance of Ser-438 in recognition of citalopram and tricyclic antidepressants. J. Biol. Chem.284, 10276–10284 (2009) ArticleCAS Google Scholar
Talvenheimo, J., Fishkes, H., Nelson, P. J. & Rudnick, G. The serotonin transporter-imipramine “receptor”. J. Biol. Chem.258, 6115–6119 (1983) CASPubMed Google Scholar
Singh, S. K., Yamashita, A. & Gouaux, E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature448, 952–956 (2007) ArticleADSCAS Google Scholar
Zhou, Z. et al. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science317, 1390–1393 (2007) ArticleADSCAS Google Scholar
Zhou, Z. et al. Antidepressant specificity of serotonin transporter suggested by three LeuT–SSRI structures. Nature Struct. Mol. Biol.16, 652–657 (2009) ArticleCAS Google Scholar
Harding, M. M. Metal–ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr. D58, 872–874 (2002) Article Google Scholar
Forrest, L. R., Tavoulari, S., Zhang, Y. W., Rudnick, G. & Honig, B. Identification of a chloride ion binding site in Na+/Cl−-dependent transporters. Proc. Natl Acad. Sci. USA104, 12761–12766 (2007) ArticleADSCAS Google Scholar
Zomot, E. et al. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature449, 726–730 (2007) ArticleADSCAS Google Scholar
Kantcheva, A. K. et al. Chloride binding site of neurotransmitter sodium symporters. Proc. Natl Acad. Sci. USA110, 8489–8494 (2013) ArticleADSCAS Google Scholar
Tavoulari, S., Forrest, L. R. & Rudnick, G. Fluoxetine (Prozac) binding to serotonin transporter is modulated by chloride and conformational changes. J. Neurosci.29, 9635–9643 (2009) ArticleCAS Google Scholar
Scanlon, S. M., Williams, D. C. & Schloss, P. Membrane cholesterol modulates serotonin transporter activity. Biochemistry40, 10507–10513 (2001) ArticleCAS Google Scholar
North, P. & Fleischer, S. Alteration of synaptic membrane cholesterol/phospholipid ratio using a lipid transfer protein. Effect on γ-aminobutyric acid uptake. J. Biol. Chem.258, 1242–1253 (1983) CASPubMed Google Scholar
Hong, W. C. & Amara, S. G. Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. J. Biol. Chem.285, 32616–32626 (2010) ArticleCAS Google Scholar
Bennett, E. R., Su, H. & Kanner, B. I. Mutation of arginine 44 of GAT-1, a (Na+ + Cl−-coupled γ-aminobutyric acid transporter from rat brain, impairs net flux but not exchange. J. Biol. Chem.275, 34106–34113 (2000) ArticleCAS Google Scholar
Cao, Y., Li, M., Mager, S. & Lester, H. A. Amino acid residues that control pH modulation of transport-associated current in mammalian serotonin transporters. J. Neurosci.18, 7739–7749 (1998) ArticleCAS Google Scholar
Loland, C. J., Norregaard, L., Litman, T. & Gether, U. Generation of an activating Zn2+ switch in the dopamine transporter: mutation of an intracellular tyrosine constitutively alters the conformational equilibrium of the transport cycle. Proc. Natl Acad. Sci. USA99, 1683–1688 (2002) ArticleADSCAS Google Scholar
Holton, K. L., Loder, M. K. & Melikian, H. E. Nonclassical, distinct endocytic signals dictate constitutive and PKC-regulated neurotransmitter transporter internalization. Nature Neurosci.8, 881–888 (2005) ArticleCAS Google Scholar
Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure14, 673–681 (2006) ArticleCAS Google Scholar
Dukkipati, A., Park, H. H., Waghray, D., Fischer, S. & Garcia, K. C. BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expr. Purif.62, 160–170 (2008) ArticleCAS Google Scholar
Reeves, P. J., Callewaert, N., Contreras, R. & Khorana, H. G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible _N_-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl Acad. Sci. USA99, 13419–13424 (2002) ArticleADSCAS Google Scholar
Baconguis, I. & Gouaux, E. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature489, 400–405 (2012) ArticleADSCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997) ArticleCAS Google Scholar
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007) ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) Article Google Scholar
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D68, 352–367 (2012) ArticleCAS Google Scholar
Terwilliger, T. C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D64, 61–69 (2008) ArticleCAS Google Scholar
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr.66, 12–21 (2010) ArticleCAS Google Scholar
Quick, M. & Javitch, J. A. Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc. Natl Acad. Sci. USA104, 3603–3608 (2007) ArticleADSCAS Google Scholar
Giros, B. et al. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol. Pharmacol.42, 383–390 (1992) CASPubMed Google Scholar