Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate (original) (raw)

References

  1. Sloan, E. D. & Koh, C. A. Clathrate Hydrates of Natural Gases 3rd edn (CRC Press, Taylor & Francis Group, 2008)
    Google Scholar
  2. van der Waals, J. H. & Platteeuw, J. C. Clathrate solutions. Adv. Chem. Phys. 2, 1–57 (1959)
    CAS Google Scholar
  3. Ballard, A. L. & Sloan, E. D. The next generation of hydrate prediction I. Hydrate standard states and incorporation of spectroscopy. Fluid Phase Equilib. 194–197, 371–383 (2002)
    Article Google Scholar
  4. Belosludov, V. R. et al. Thermal expansion and lattice distortion of clathrate hydrates of cubic structures I and II. J. Supramol. Chem. 2, 453–458 (2002)
    Article CAS Google Scholar
  5. Koyama, Y., Tanaka, H. & Koga, K. On the thermodynamic stability and structural transition of clathrate hydrates. J. Chem. Phys. 122, 074503 (2005)
    Article ADS Google Scholar
  6. Matsumoto, M. & Tanaka, H. On the structure selectivity of clathrate hydrates. J. Phys. Chem. B 115, 8257–8265 (2011)
    Article CAS Google Scholar
  7. Jacobson, L. C., Hujo, W. & Molinero, V. Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water. J. Phys. Chem. B 113, 10298–10307 (2009)
    Article CAS Google Scholar
  8. Wooldridge, P. J., Richardson, H. H. & Devlin, J. P. Mobile Bjerrum defects — A criterion for ice-like crystal-growth. J. Chem. Phys. 87, 4126–4131 (1987)
    Article ADS CAS Google Scholar
  9. Guloy, A. M. et al. A guest-free germanium clathrate. Nature 443, 320–323 (2006)
    Article ADS CAS Google Scholar
  10. Gryko, J. et al. Low-density framework form of crystalline silicon with a wide optical band gap. Phys. Rev. B 62, R7707–R7710 (2000)
    Article ADS CAS Google Scholar
  11. Bartels-Rausch, T. et al. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84, 885–944 (2012)
    Article ADS CAS Google Scholar
  12. Conde, M. M., Vega, C., Tribello, G. A. & Slater, B. The phase diagram of water at negative pressures: Virtual ices. J. Chem. Phys. 131, 034510 (2009)
    Article ADS CAS Google Scholar
  13. Gies, H., Liebau, F. & Gerke, H. “Dodecasile” - eine neue Reihe polytyper Einschlußverbindungen von SiO2 . Angew. Chem. 94, 214–215 (1982)
    Article CAS Google Scholar
  14. Falenty, A., Salamatin, A. N. & Kuhs, W. F. Kinetics of CO2-hydrate formation from ice powders: data summary and modeling extended to low temperatures. J. Phys. Chem. C 117, 8443–8457 (2013)
    Article CAS Google Scholar
  15. Alavi, S. & Ripmeester, J. A. Hydrogen-gas migration through clathrate hydrate cages. Angew. Chem. Int. Edn 46, 6102–6105 (2007)
    Article CAS Google Scholar
  16. Senadheera, L. & Conradi, M. S. Rotation and diffusion of H2 in hydrogen – Ice clathrate by 1H NMR. J. Phys. Chem. B 111, 12097–12102 (2007)
    Article CAS Google Scholar
  17. Dyadin, Y. A. et al. Clathrate formation in water-noble gas (hydrogen) systems at high pressures. J. Struct. Chem. 40, 790–795 (1999)
    Article CAS Google Scholar
  18. Mao, W. L. et al. Hydrogen clusters in clathrate hydrate. Science 297, 2247–2249 (2002)
    Article ADS CAS Google Scholar
  19. Evans, J. S. O. Negative thermal expansion materials. J. Chem. Soc. Dalton Trans. 3317–3326 (1999)
  20. Tang, X. L. et al. Thermal properties of Si-136: Theoretical and experimental study of the type-II clathrate polymorph of Si. Phys. Rev. B 74, 014109 (2006)
    Article ADS Google Scholar
  21. Röttger, K., Endriss, A., Ihringer, J., Doyle, S. & Kuhs, W. F. Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. Acta Crystallogr. B 50, 644–648 (1994); Addendum. Acta Crystallogr. B 68, 91 (2012)
    Article Google Scholar
  22. Tanaka, H. Thermodynamic stability and negative thermal expansion of hexagonal and cubic ices. J. Chem. Phys. 108, 4887–4893 (1998)
    Article ADS CAS Google Scholar
  23. Pamuk, B. et al. Anomalous nuclear quantum effects in ice. Phys. Rev. Lett. 108, 193003 (2012)
    Article ADS CAS Google Scholar
  24. Lobban, C., Finney, J. L. & Kuhs, W. F. The structure of a new phase of ice. Nature 391, 268–270 (1998)
    Article ADS CAS Google Scholar
  25. Kuhs, W. F., Sippel, C., Falenty, A. & Hansen, T. C. Extent and relevance of stacking disorder in “ice Ic”. Proc. Natl Acad. Sci. USA 109, 21259–21264 (2012)
    Article ADS CAS Google Scholar
  26. Rodger, P. M. Lattice relaxation in type I gas hydrates. AIChE J. 37, 1511–1516 (1991)
    Article CAS Google Scholar
  27. Kuo, J. L., Klein, M. L. & Kuhs, W. F. The effect of proton disorder on the structure of ice-Ih: A theoretical study. J. Chem. Phys. 123, 134505 (2005)
    Article ADS Google Scholar
  28. Kumar, P. & Sathyamurthy, N. Theoretical studies of host-guest interaction in gas hydrates. J. Phys. Chem. A 115, 14276–14281 (2011)
    Article CAS Google Scholar
  29. Anderson, B. J., Bazant, M. Z., Tester, J. W. & Trout, B. L. Application of the cell potential method to predict phase equilibria of multicomponent gas hydrate systems. J. Phys. Chem. B 109, 8153–8163 (2005)
    Article CAS Google Scholar
  30. Weaire, D. & Phelan, R. A counterexample to Kelvin conjecture on minimal-surfaces. Phil. Mag. Lett. 69, 107–110 (1994)
    Article ADS CAS Google Scholar
  31. Hansen, T. C., Henry, P. F., Fischer, H. E., Torregrossa, J. & Convert, P. The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometer. Meas. Sci. Technol. 19, 034001 http://dx.doi.org/10.1088/0957-0233/19/3/034001 (2008)
    Article ADS Google Scholar
  32. Rodríguez-Carvajal, J. Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993)
    Article ADS Google Scholar
  33. Kuhs, W. F. Generalized atomic displacements in crystallographic structure-analysis. Acta Crystallogr. A 48, 80–98 (1992)
    Article Google Scholar
  34. James, F. Monte-Carlo theory and practice. Rep. Prog. Phys. 43, 1145–1189 (1980)
    Article ADS CAS Google Scholar
  35. Peters, B., Zimmermann, N. E. R., Beckham, G. T., Tester, J. W. & Trout, B. L. Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism. J. Am. Chem. Soc. 130, 17342–17350 (2008)
    Article CAS Google Scholar
  36. Buch, V. et al. Clathrate hydrates with hydrogen-bonding guests. Phys. Chem. Chem. Phys. 11, 10245–10265 (2009)
    Article CAS Google Scholar
  37. Demurov, A., Radhakrishnan, R. & Trout, B. L. Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations. J. Chem. Phys. 116, 702–709 (2002)
    Article ADS CAS Google Scholar

Download references