Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate (original) (raw)
References
Sloan, E. D. & Koh, C. A. Clathrate Hydrates of Natural Gases 3rd edn (CRC Press, Taylor & Francis Group, 2008) Google Scholar
van der Waals, J. H. & Platteeuw, J. C. Clathrate solutions. Adv. Chem. Phys.2, 1–57 (1959) CAS Google Scholar
Ballard, A. L. & Sloan, E. D. The next generation of hydrate prediction I. Hydrate standard states and incorporation of spectroscopy. Fluid Phase Equilib.194–197, 371–383 (2002) Article Google Scholar
Belosludov, V. R. et al. Thermal expansion and lattice distortion of clathrate hydrates of cubic structures I and II. J. Supramol. Chem.2, 453–458 (2002) ArticleCAS Google Scholar
Koyama, Y., Tanaka, H. & Koga, K. On the thermodynamic stability and structural transition of clathrate hydrates. J. Chem. Phys.122, 074503 (2005) ArticleADS Google Scholar
Matsumoto, M. & Tanaka, H. On the structure selectivity of clathrate hydrates. J. Phys. Chem. B115, 8257–8265 (2011) ArticleCAS Google Scholar
Jacobson, L. C., Hujo, W. & Molinero, V. Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water. J. Phys. Chem. B113, 10298–10307 (2009) ArticleCAS Google Scholar
Wooldridge, P. J., Richardson, H. H. & Devlin, J. P. Mobile Bjerrum defects — A criterion for ice-like crystal-growth. J. Chem. Phys.87, 4126–4131 (1987) ArticleADSCAS Google Scholar
Gryko, J. et al. Low-density framework form of crystalline silicon with a wide optical band gap. Phys. Rev. B62, R7707–R7710 (2000) ArticleADSCAS Google Scholar
Bartels-Rausch, T. et al. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys.84, 885–944 (2012) ArticleADSCAS Google Scholar
Conde, M. M., Vega, C., Tribello, G. A. & Slater, B. The phase diagram of water at negative pressures: Virtual ices. J. Chem. Phys.131, 034510 (2009) ArticleADSCAS Google Scholar
Gies, H., Liebau, F. & Gerke, H. “Dodecasile” - eine neue Reihe polytyper Einschlußverbindungen von SiO2 . Angew. Chem.94, 214–215 (1982) ArticleCAS Google Scholar
Falenty, A., Salamatin, A. N. & Kuhs, W. F. Kinetics of CO2-hydrate formation from ice powders: data summary and modeling extended to low temperatures. J. Phys. Chem. C117, 8443–8457 (2013) ArticleCAS Google Scholar
Alavi, S. & Ripmeester, J. A. Hydrogen-gas migration through clathrate hydrate cages. Angew. Chem. Int. Edn46, 6102–6105 (2007) ArticleCAS Google Scholar
Senadheera, L. & Conradi, M. S. Rotation and diffusion of H2 in hydrogen – Ice clathrate by 1H NMR. J. Phys. Chem. B111, 12097–12102 (2007) ArticleCAS Google Scholar
Dyadin, Y. A. et al. Clathrate formation in water-noble gas (hydrogen) systems at high pressures. J. Struct. Chem.40, 790–795 (1999) ArticleCAS Google Scholar
Mao, W. L. et al. Hydrogen clusters in clathrate hydrate. Science297, 2247–2249 (2002) ArticleADSCAS Google Scholar
Evans, J. S. O. Negative thermal expansion materials. J. Chem. Soc. Dalton Trans. 3317–3326 (1999)
Tang, X. L. et al. Thermal properties of Si-136: Theoretical and experimental study of the type-II clathrate polymorph of Si. Phys. Rev. B74, 014109 (2006) ArticleADS Google Scholar
Röttger, K., Endriss, A., Ihringer, J., Doyle, S. & Kuhs, W. F. Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. Acta Crystallogr. B50, 644–648 (1994); Addendum. Acta Crystallogr. B68, 91 (2012) Article Google Scholar
Tanaka, H. Thermodynamic stability and negative thermal expansion of hexagonal and cubic ices. J. Chem. Phys.108, 4887–4893 (1998) ArticleADSCAS Google Scholar
Pamuk, B. et al. Anomalous nuclear quantum effects in ice. Phys. Rev. Lett.108, 193003 (2012) ArticleADSCAS Google Scholar
Lobban, C., Finney, J. L. & Kuhs, W. F. The structure of a new phase of ice. Nature391, 268–270 (1998) ArticleADSCAS Google Scholar
Kuhs, W. F., Sippel, C., Falenty, A. & Hansen, T. C. Extent and relevance of stacking disorder in “ice Ic”. Proc. Natl Acad. Sci. USA109, 21259–21264 (2012) ArticleADSCAS Google Scholar
Rodger, P. M. Lattice relaxation in type I gas hydrates. AIChE J.37, 1511–1516 (1991) ArticleCAS Google Scholar
Kuo, J. L., Klein, M. L. & Kuhs, W. F. The effect of proton disorder on the structure of ice-Ih: A theoretical study. J. Chem. Phys.123, 134505 (2005) ArticleADS Google Scholar
Kumar, P. & Sathyamurthy, N. Theoretical studies of host-guest interaction in gas hydrates. J. Phys. Chem. A115, 14276–14281 (2011) ArticleCAS Google Scholar
Anderson, B. J., Bazant, M. Z., Tester, J. W. & Trout, B. L. Application of the cell potential method to predict phase equilibria of multicomponent gas hydrate systems. J. Phys. Chem. B109, 8153–8163 (2005) ArticleCAS Google Scholar
Weaire, D. & Phelan, R. A counterexample to Kelvin conjecture on minimal-surfaces. Phil. Mag. Lett.69, 107–110 (1994) ArticleADSCAS Google Scholar
Rodríguez-Carvajal, J. Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B192, 55–69 (1993) ArticleADS Google Scholar
Kuhs, W. F. Generalized atomic displacements in crystallographic structure-analysis. Acta Crystallogr. A48, 80–98 (1992) Article Google Scholar
Peters, B., Zimmermann, N. E. R., Beckham, G. T., Tester, J. W. & Trout, B. L. Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism. J. Am. Chem. Soc.130, 17342–17350 (2008) ArticleCAS Google Scholar
Buch, V. et al. Clathrate hydrates with hydrogen-bonding guests. Phys. Chem. Chem. Phys.11, 10245–10265 (2009) ArticleCAS Google Scholar
Demurov, A., Radhakrishnan, R. & Trout, B. L. Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations. J. Chem. Phys.116, 702–709 (2002) ArticleADSCAS Google Scholar