Glutathione activates virulence gene expression of an intracellular pathogen (original) (raw)
References
Xayarath, B. & Freitag, N. E. Optimizing the balance between host and environmental survival skills: lessons learned from Listeria monocytogenes . Future Microbiol.7, 839–852 (2012) ArticleCAS Google Scholar
Freitag, N. E., Port, G. C. & Miner, M. D. _Listeria monocytogenes_—from saprophyte to intracellular pathogen. Nature Rev. Microbiol.7, 623–628 (2009) ArticleCAS Google Scholar
Chakraborty, T. et al. Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J. Bacteriol.174, 568–574 (1992) ArticleCAS Google Scholar
de las Heras, A., Cain, R. J., Bielecka, M. K. & Vázquez-Boland, J. A. Regulation of Listeria virulence: PrfA master and commander. Curr. Opin. Microbiol.14, 118–127 (2011) ArticleCAS Google Scholar
Moors, M. A., Levitt, B., Youngman, P. & Portnoy, D. A. Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes . Infect. Immun.67, 131–139 (1999) CASPubMedPubMed Central Google Scholar
Shetron-Rama, L. M., Marquis, H., Bouwer, H. G. A. & Freitag, N. E. Intracellular induction of Listeria monocytogenes actA expression. Infect. Immun.70, 1087–1096 (2002) ArticleCAS Google Scholar
Gopal, S. et al. A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis. J. Bacteriol.187, 3839–3847 (2005) ArticleCAS Google Scholar
Masip, L., Veeravalli, K. & Georgiou, G. The many faces of glutathione in bacteria. Antioxid. Redox Signal.8, 753–762 (2006) ArticleCAS Google Scholar
Newton, G. L. et al. Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J. Bacteriol.178, 1990–1995 (1996) ArticleCAS Google Scholar
Newton, G. L. et al. Bacillithiol is an antioxidant thiol produced in Bacilli. Nature Chem. Biol.5, 625–627 (2009) ArticleCAS Google Scholar
Meister, A. & Anderson, M. E. Glutathione. Annu. Rev. Biochem.52, 711–760 (1983) ArticleCAS Google Scholar
Rouzer, C. A., Scott, W. A., Griffith, O. W., Hamill, A. L. & Cohn, Z. A. Depletion of glutathione selectively inhibits synthesis of leukotriene C by macrophages. Proc. Natl Acad. Sci. USA78, 2532–2536 (1981) ArticleCASADS Google Scholar
Zemansky, J. et al. Development of a mariner-based transposon and identification of Listeria monocytogenes determinants, including the peptidyl-prolyl isomerase PrsA2, that contribute to its hemolytic phenotype. J. Bacteriol.191, 3950–3964 (2009) ArticleCAS Google Scholar
Ripio, M. T., Domínguez-Bernal, G., Lara, M., Suárez, M. & Vázquez-Boland, J. A. A. Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes . J. Bacteriol.179, 1533–1540 (1997) ArticleCAS Google Scholar
Eiting, M., Hagelüken, G., Schubert, W.-D. & Heinz, D. W. The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increases DNA-binding affinity by stabilizing the HTH motif. Mol. Microbiol.56, 433–446 (2005) ArticleCAS Google Scholar
Miner, M. D., Port, G. C. & Freitag, N. E. Functional impact of mutational activation on the Listeria monocytogenes central virulence regulator PrfA. Microbiology154, 3579–3589 (2008) ArticleCAS Google Scholar
Dalle-Donne, I., Rossi, R., Colombo, G., Giustarini, D. & Milzani, A. Protein _S-_glutathionylation: a regulatory device from bacteria to humans. Trends Biochem. Sci.34, 85–96 (2009) ArticleCAS Google Scholar
Mengaud, J. et al. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol. Microbiol.5, 2273–2283 (1991) ArticleCAS Google Scholar
Kolb, A., Busby, S., Buc, H., Garges, S. & Adhya, S. Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem.62, 749–797 (1993) ArticleCAS Google Scholar
Valladares, A., Flores, E. & Herrero, A. Transcription activation by NtcA and 2-oxoglutarate of three genes involved in heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol.190, 6126–6133 (2008) ArticleCAS Google Scholar
Körner, H., Sofia, H. J. & Zumft, W. G. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol. Rev.27, 559–592 (2003) Article Google Scholar
Alkhuder, K., Meibom, K. L., Dubail, I., Dupuis, M. & Charbit, A. Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis . PLoS Pathog.5, e1000284 (2009) Article Google Scholar
Smith, K. & Youngman, P. Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie74, 705–711 (1992) ArticleCAS Google Scholar
Camilli, A., Tilney, L. G. & Portnoy, D. A. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol. Microbiol.8, 143–157 (1993) ArticleCAS Google Scholar
Lauer, P., Chow, M. Y. N., Loessner, M. J., Portnoy, D. A. & Calendar, R. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol.184, 4177–4186 (2002) ArticleCAS Google Scholar
Sauer, J.-D. et al. The _N_-ethyl-_N_-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun.79, 688–694 (2011) ArticleCAS Google Scholar
Portnoy, D. A., Jacks, P. S. & Hinrichs, D. J. Role of hemolysin for the intracellular growth of Listeria monocytogenes . J. Exp. Med.167, 1459–1471 (1988) ArticleCAS Google Scholar
Sun, A. N., Camilli, A. & Portnoy, D. A. Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect. Immun.58, 3770–3778 (1990) CASPubMedPubMed Central Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods9, 671–675 (2012) ArticleCAS Google Scholar
Lauer, P. et al. Constitutive activation of the PrfA regulon enhances the potency of vaccines based on live-attenuated and killed but metabolically active Listeria monocytogenes strains. Infect. Immun.76, 3742–3753 (2008) ArticleCAS Google Scholar
Köhler, S., Bubert, A., Vogel, M. & Goebel, W. Expression of the iap gene coding for protein p60 of Listeria monocytogenes is controlled on the posttranscriptional level. J. Bacteriol.173, 4668–4674 (1991) Article Google Scholar
Sauer, J.-D. et al. Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe7, 412–419 (2010) ArticleCAS Google Scholar
Melton-Witt, J. A., McKay, S. L. & Portnoy, D. A. Development of a single-gene, signature-tag-based approach in combination with alanine mutagenesis to identify listeriolysin O residues critical for the in vivo survival of Listeria monocytogenes . Infect. Immun.80, 2221–2230 (2012) ArticleCAS Google Scholar
Böckmann, R., Dickneite, C., Middendorf, B., Goebel, W. & Sokolovic, Z. Specific binding of the Listeria monocytogenes transcriptional regulator PrfA to target sequences requires additional factor(s) and is influenced by iron. Mol. Microbiol.22, 643–653 (1996) Article Google Scholar
Bishop, D. K. & Hinrichs, D. J. Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J. Immunol.139, 2005–2009 (1987) CASPubMed Google Scholar
Skoble, J., Portnoy, D. A. & Welch, M. D. Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J. Cell Biol.150, 527–538 (2000) ArticleCAS Google Scholar
Cheng, L. W. & Portnoy, D. A. Drosophila S2 cells: an alternative infection model for Listeria monocytogenes . Cell. Microbiol.5, 875–885 (2003) ArticleCAS Google Scholar