Listeria monocytogenes — from saprophyte to intracellular pathogen (original) (raw)
Gao, Z., Tseng, C. H., Pei, Z. & Blaser, M. J. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl Acad. Sci. USA104, 2927–2932 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sakamoto, M., Umeda, M. & Benno, Y. Molecular analysis of human oral microbiota. J. Periodont. Res.40, 277–285 (2005). ArticleCAS Google Scholar
Zoetendal, E. G., Rajilic-Stojanovic, M. & de Vos, W. M. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut57, 1605–1615 (2008). ArticleCASPubMed Google Scholar
Gans, J., Wolinsky, M. & Dunbar, J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science309, 1387–1390 (2005). ArticleCASPubMed Google Scholar
Gray, M. L. & Killinger, A. H. Listeria monocytogenes and listeric infections. Bacteriol. Rev.30, 309–382 (1966). CASPubMedPubMed Central Google Scholar
Freitag, N. E. From hot dogs to host cells: how the bacterial pathogen Listeria monocytogenes regulates virulence gene expression. Future Microbiol.1, 89–101 (2006). ArticleCASPubMed Google Scholar
Drevets, D. A. & Bronze, M. S. Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunol. Med. Microbiol.53, 151–165 (2008). ArticleCASPubMed Google Scholar
Scortti, M., Monzo, H. J., Lacharme-Lora, L., Lewis, D. A. & Vazquez-Boland, J. A. The PrfA virulence regulon. Microbes Infect.9, 1196–1207 (2007). ArticleCASPubMed Google Scholar
Thevenot, D., Dernburg, A. & Vernozy-Rozand, C. An updated review of Listeria monocytogenes in the pork meat industry and its products. J. Appl. Microbiol.101, 7–17 (2006). ArticleCASPubMed Google Scholar
Hilbi, H., Weber, S. S., Ragaz, C., Nyfeler, Y. & Urwyler, S. Environmental predators as models for bacterial pathogenesis. Environ. Microbiol.9, 563–575 (2007). ArticleCASPubMed Google Scholar
Chaturongakul, S., Raengpradub, S., Wiedmann, M. & Boor, K. J. Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol.16, 388–396 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lunden, J. M., Autio, T. J. & Korkeala, H. J. Transfer of persistent Listeria monocytogenes contamination between food-processing plants associated with a dicing machine. J. Food Prot.65, 1129–1133 (2002). ArticlePubMed Google Scholar
Seveau, S., Pizarro-Cerda, J. & Cossart, P. Molecular mechanisms exploited by Listeria monocytogenes during host cell invasion. Microbes Infect.9, 1167–1175 (2007). ArticleCASPubMed Google Scholar
Wollert, T. et al. Extending the host range of Listeria monocytogenes by rational protein design. Cell129, 891–902 (2007). ArticleCASPubMed Google Scholar
Bakardjiev, A. I., Stacy, B. A., Fisher, S. J. & Portnoy, D. A. Listeriosis in the pregnant guinea pig: a model of vertical transmission. Infect. Immun.72, 489–497 (2004). ArticleCASPubMedPubMed Central Google Scholar
Smith, M. A. et al. Dose-response model for _Listeria monocytogenes_-induced stillbirths in nonhuman primates. Infect. Immun.76, 726–731 (2008). ArticleCASPubMed Google Scholar
Blanot, S. et al. A gerbil model for rhombencephalitis due to Listeria monocytogenes. Microb. Pathog.23, 39–48 (1997). ArticleCASPubMed Google Scholar
Zenewicz, L. A. & Shen, H. Innate and adaptive immune responses to Listeria monocytogenes: a short overview. Microbes Infect.9, 1208–1215 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pamer, E. G. Immune responses to Listeria monocytogenes. Nature Rev. Immunol.4, 812–823 (2004). ArticleCAS Google Scholar
Pizarro-Cerda, J. & Cossart, P. Subversion of cellular functions by Listeria monocytogenes. J. Pathol.208, 215–223 (2006). ArticleCASPubMed Google Scholar
Schnupf, P. & Portnoy, D. A. Listeriolysin O: a phagosome-specific lysin. Microbes Infect.9, 1176–1187 (2007). ArticleCASPubMed Google Scholar
Kathariou, S., Metz, P., Hof, H. & Goebel, W. Tn_916_-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes. J. Bacteriol.169, 1291–1297 (1987). ArticleCASPubMedPubMed Central Google Scholar
Vazquez-Boland, J. et al. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect. Immun.60, 219–230 (1992). CASPubMedPubMed Central Google Scholar
Mengaud, J., Braun-Breton, C. & Cossart, P. Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor? Mol. Microbiol.5, 367–372 (1991). ArticleCASPubMed Google Scholar
Camilli, A., Goldfine, H. & Portnoy, D. A. Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent. J. Exp. Med.173, 751–754 (1991). ArticleCASPubMed Google Scholar
Joseph, B. & Goebel, W. Life of Listeria monocytogenes in the host cells' cytosol. Microbes Infect.9, 1188–1195 (2007). ArticleCASPubMed Google Scholar
Marquis, H., Bouwer, H. G., Hinrichs, D. J. & Portnoy, D. A. Intracytoplasmic growth and virulence of Listeria monocytogenes auxotrophic mutants. Infect. Immun.61, 3756–3760 (1993). CASPubMedPubMed Central Google Scholar
O'Riordan, M., Moors, M. A. & Portnoy, D. A. Listeria intracellular growth and virulence require host-derived lipoic acid. Science302, 462–464 (2003). ArticleCASPubMed Google Scholar
Yeung, P. S., Na, Y., Kreuder, A. J. & Marquis, H. Compartmentalization of the broad-range phospholipase C activity to the spreading vacuole is critical for Listeria monocytogenes virulence. Infect. Immun.75, 44–51 (2007). ArticleCASPubMed Google Scholar
Scortti, M. et al. Coexpression of virulence and fosfomycin susceptibility in Listeria: molecular basis of an antimicrobial in vitro_–_in vivo paradox. Nature Med.12, 515–517 (2006). ArticleCASPubMed Google Scholar
Port, G. C. & Freitag, N. E. Identification of novel Listeria monocytogenes secreted virulence factors following mutational activation of the central virulence regulator, PrfA. Infect. Immun.75, 5886–5897 (2007). ArticleCASPubMedPubMed Central Google Scholar
Begley, M., Sleator, R. D., Gahan, C. G. & Hill, C. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect. Immun.73, 894–904 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hardy, J. et al. Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science303, 851–853 (2004). ArticleCASPubMed Google Scholar
Dussurget, O. et al. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol.45, 1095–1106 (2002). ArticleCASPubMed Google Scholar
Gahan, C. G. & Hill, C. Gastrointestinal phase of Listeria monocytogenes infection. J. Appl. Microbiol.98, 1345–1353 (2005). ArticleCASPubMed Google Scholar
Freitag, N. E., Rong, L. & Portnoy, D. A. Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect. Immun.61, 2537–2544 (1993). CASPubMedPubMed Central Google Scholar
Freitag, N. E. & Portnoy, D. A. Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essential in vitro but are redundant in vivo. Mol. Microbiol.12, 845–853 (1994). ArticleCASPubMed Google Scholar
Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell110, 551 (2002). ArticlePubMed Google Scholar
Cheng, L. W. & Portnoy, D. A. Drosophila S2 cells: an alternative infection model for Listeria monocytogenes. Cell. Microbiol.5, 875–885 (2003). ArticleCASPubMed Google Scholar
Cheng, L. W. et al. Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen. Proc. Natl Acad. Sci. USA102, 13646–13651 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mansfield, B. E., Dionne, M. S., Schneider, D. S. & Freitag, N. E. Exploration of host–pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell. Microbiol.5, 901–911 (2003). ArticleCASPubMed Google Scholar
Agaisse, H. et al. Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science309, 1248–1251 (2005). ArticleCASPubMed Google Scholar
Renzoni, A., Klarsfeld, A., Dramsi, S. & Cossart, P. Evidence that PrfA, the pleitropic activator of virulence genes in Listeria monocytogenes, can be present but inactive. Infect. Immun.65, 1515–1518 (1997). CASPubMedPubMed Central Google Scholar
Lampidis, R., Gross, R., Sokolovic, Z., Goebel, W. & Kreft, J. The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp–Fnr family of transcription regulators. Mol. Microbiol.13, 141–151 (1994). ArticleCASPubMed Google Scholar
Vega, Y. et al. Functional similarities between the Listeria monocytogenes virulence regulator PrfA and cyclic AMP receptor protein: the PrfA* (Gly145Ser) mutation increases binding affinity for target DNA. J. Bacteriol.180, 6655–6660 (1998). CASPubMedPubMed Central Google Scholar
Korner, H., Sofia, H. J. & Zumft, W. G. Phylogeny of the bacterial superfamily of Crp–Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol. Rev.27, 559–592 (2003). ArticleCASPubMed Google Scholar
Milenbachs, A. A., Brown, D. P., Moors, M. & Youngman, P. Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol. Microbiol.23, 1075–1085 (1997). ArticleCASPubMed Google Scholar
Park, S. F., Stewart, G. S. A. B. & Kroll, R. G. The use of bacterial luciferase for monitoring the environmental regulation of expression of genes encoding virulence factors in Listeria monocytogenes. J. Gen. Microbiol.138, 2619–2627 (1992). ArticleCASPubMed Google Scholar
Chico-Calero, I. et al. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl Acad. Sci. USA99, 431–436 (2002). ArticleCASPubMed Google Scholar
Park, S. F. & Kroll, R. G. Expression of listeriolysin and phosphatidylinositol-specific phospholipase C is repressed by the plant-derived molecule cellobiose in Listeria monocytogenes. Mol. Microbiol.8, 653–661 (1993). ArticleCASPubMed Google Scholar
Joseph, B. et al. Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J. Bacteriol.188, 556–568 (2006). ArticleCASPubMedPubMed Central Google Scholar
Eylert, E. et al. Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol. Microbiol.69, 1008–1017 (2008). ArticleCASPubMed Google Scholar
Gorke, B. & Stulke, J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Rev. Microbiol.6, 613–624 (2008). ArticleCAS Google Scholar
Stoll, R., Mertins, S., Joseph, B., Muller-Altrock, S. & Goebel, W. Modulation of PrfA activity in Listeria monocytogenes upon growth in different culture media. Microbiology154, 3856–3876 (2008). ArticleCASPubMed Google Scholar
Eiting, M., Hageluken, G., Schubert, W. D. & Heinz, D. W. The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increases DNA-binding affinity by stabilizing the HTH motif. Mol. Microbiol.56, 433–446 (2005). ArticleCASPubMed Google Scholar
Miner, M. D., Port, G. C., Bouwer, H. G., Chang, J. C. & Freitag, N. E. A novel prfA mutation that promotes Listeria monocytogenes cytosol entry but reduces bacterial spread and cytotoxicity. Microb. Pathog.45, 273–281 (2008). ArticleCASPubMedPubMed Central Google Scholar
Miner, M. D., Port, G. C. & Freitag, N. E. Functional impact of mutational activation on the Listeria monocytogenes central virulence regulator PrfA. Microbiology154, 3579–3589 (2008). ArticleCASPubMed Google Scholar
Ripio, M.-T., Dominguez-Bernal, G., Lara, M., Suarez, M. & Vazquez-Boland, J.-A. A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. J. Bacteriol.179, 1533–1540 (1997). ArticleCASPubMedPubMed Central Google Scholar
Shetron-Rama, L. M. et al. Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol. Microbiol.48, 1537–1551 (2003). ArticleCASPubMed Google Scholar
Vega, Y. et al. New Listeria monocytogenes prfA* mutants, transcriptional properties of PrfA* proteins and structure–function of the virulence regulator PrfA. Mol. Microbiol.52, 1553–1565 (2004). ArticleCASPubMed Google Scholar
Wong, K. K. & Freitag, N. E. A novel mutation within the central Listeria monocytogenes regulator PrfA that results in constitutive expression of virulence gene products. J. Bacteriol.186, 6265–6276 (2004). ArticleCASPubMedPubMed Central Google Scholar
Monk, I. R., Gahan, C. G. & Hill, C. Tools for functional postgenomic analysis of Listeria monocytogenes. Appl. Environ. Microbiol.74, 3921–3934 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mauder, N. et al. Species-specific differences in the activity of PrfA, the key regulator of listerial virulence genes. J. Bacteriol.188, 7941–7956 (2006). ArticleCASPubMedPubMed Central Google Scholar
Milohanic, E. et al. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol. Microbiol.47, 1613–1625 (2003). ArticleCASPubMed Google Scholar
Gray, M. J., Freitag, N. E. & Boor, K. J. How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect. Immun.74, 2505–2512 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ollinger, J., Bowen, B., Wiedmann, M., Boor, K. J. & Bergholz, T. M. Listeria monocytogenes σB modulates PrfA-mediated virulence factor expression. Infect. Immun.77, 2113–2124 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ollinger, J., Wiedmann, M. & Boor, K. J. σB- and PrfA-dependent transcription of genes previously classified as putative constituents of the Listeria monocytogenes PrfA regulon. Foodborne Pathog. Dis.5, 281–293 (2008). ArticleCASPubMedPubMed Central Google Scholar
Toledo-Arana, A. et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature459, 950–956 (2009). ArticleCASPubMed Google Scholar
Mueller, K. J. & Freitag, N. E. Pleiotropic enhancement of bacterial pathogenesis resulting from the constitutive activation of the Listeria monocytogenes regulatory factor PrfA. Infect. Immun.73, 1917–1926 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ripio, M. T. et al. Transcriptional activation of virulence genes in wild-type strains of Listeria monocytogenes in response to a change in the extracellular medium composition. Res. Microbiol.147, 371–384 (1996). ArticleCASPubMed Google Scholar
Marr, A. K. et al. Overexpression of PrfA leads to growth inhibition of Listeria monocytogenes in glucose-containing culture media by interfering with glucose uptake. J. Bacteriol.188, 3887–3901 (2006). ArticleCASPubMedPubMed Central Google Scholar
Brockstedt, D. G. & Dubensky, T. W. Promises and challenges for the development of _Listeria monocytogenes_-based immunotherapies. Expert Rev. Vaccines7, 1069–1084 (2008). ArticlePubMed Google Scholar
Schoen, C. et al. Listeria monocytogenes as novel carrier system for the development of live vaccines. Int. J. Med. Microbiol.298, 45–58 (2008). ArticleCASPubMed Google Scholar
Shen, H. et al. Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc. Natl Acad. Sci. USA92, 3987–3991 (1995). ArticleCASPubMedPubMed Central Google Scholar
Wood, L. M., Guirnalda, P. D., Seavey, M. M. & Paterson, Y. Cancer immunotherapy using Listeria monocytogenes and listerial virulence factors. Immunol. Res.42, 233–245 (2008). ArticlePubMedPubMed Central Google Scholar
Bruhn, K. W., Craft, N. & Miller, J. F. Listeria as a vaccine vector. Microbes Infect.9, 1226–1235 (2007). ArticleCASPubMed Google Scholar
Lauer, P. et al. Constitutive activation of the PrfA regulon enhances the potency of vaccines based on live-attenuated and killed but metabolically active Listeria monocytogenes strains. Infect. Immun.76, 3742–3753 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yan, L. et al. Selected prfA* mutations in recombinant attenuated Listeria monocytogenes strains augment expression of foreign immunogens and enhance vaccine-elicited humoral and cellular immune responses. Infect. Immun.76, 3439–3450 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol.109, 1597–1608 (1989). ArticleCASPubMed Google Scholar