The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein (original) (raw)
References
Hoffmann, J. A. & Reichhart, J. M. Drosophila innate immunity: an evolutionary perspective. Nature Immunol.3, 121–126 (2002) ArticleCAS Google Scholar
Tzou, P., De Gregorio, E. & Lemaitre, B. How Drosophila combats microbial infection: a model to study innate immunity and host–pathogen interactions. Curr. Opin. Microbiol.5, 102–110 (2002) ArticleCAS Google Scholar
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell86, 973–983 (1996) ArticleCAS Google Scholar
Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev.13, 792–797 (1999) ArticleCAS Google Scholar
Rutschmann, S. et al. The Rel protein DIF mediates the antifungal, but not the antibacterial, response in Drosophila. Immunity12, 569–580 (2000) ArticleCAS Google Scholar
Michel, T., Reichhart, J., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature414, 756–759 (2001) ArticleADSCAS Google Scholar
Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J. A. & Imler, J. L. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nature Immunol.3, 91–97 (2002) ArticleCAS Google Scholar
Rutschmann, S., Kilinc, A. & Ferrandon, D. The Toll pathway is required for resistance to Gram-positive bacterial infections in Drosophila. J. Immunol.168, 1542–1546 (2002) ArticleCAS Google Scholar
Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defence. Proc. Natl Acad. Sci. USA92, 9465–9469 (1995) ArticleADSCAS Google Scholar
Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell4, 1–20 (1999) Article Google Scholar
Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol.10, 781–784 (2000) ArticleCAS Google Scholar
Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nature Immunol.1, 342–347 (2000) ArticleCAS Google Scholar
Silverman, N. et al. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev.14, 2461–2471 (2000) ArticleCAS Google Scholar
Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infections. EMBO Rep.1, 353–358 (2000) ArticleCAS Google Scholar
Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev.15, 104–110 (2001) ArticleCAS Google Scholar
Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB dependent innate immune responses. Genes Dev.15, 1900–1912 (2001) ArticleCAS Google Scholar
Wu, L. P., Choe, K. M., Lu, Y. & Anderson, K. V. Drosophila immunity: genes on the third chromosome required for the response to bacterial infection. Genetics159, 189–199 (2001) CASPubMedPubMed Central Google Scholar
Georgel, P. et al. Drosophila Immune Deficiency (IMD) is a Death Domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell1, 503–514 (2001) ArticleCAS Google Scholar
Yoshida, H., Kinoshita, K. & Ashida, M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem.271, 13854–13860 (1996) ArticleCAS Google Scholar
Kang, D., Liu, G., Lundstrom, A., Gelius, E. & Steiner, H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl Acad. Sci. USA95, 10078–10082 (1998) ArticleADSCAS Google Scholar
Werner, T. et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl Acad. Sci. USA97, 13772–13777 (2000) ArticleADSCAS Google Scholar
Liu, C., Gelius, E., Liu, G., Steiner, H. & Dziarski, R. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J. Biol. Chem.275, 24490–24499 (2000) ArticleCAS Google Scholar
Liu, C., Xu, Z., Gupta, D. & Dziarski, R. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem.276, 34686–34694 (2001) ArticleCAS Google Scholar
Stöven, S., Ando, I., Kadalayil, L., Engström, Y. & Hultmark, D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep.1, 347–352 (2000) Article Google Scholar
Ochiai, M. & Ashida, M. A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori. J. Biol. Chem.274, 11854–11858 (1999) ArticleCAS Google Scholar
Sieling, P. A. & Modlin, R. L. Toll-like receptors: mammalian ‘taste receptors’ for a smorgasbord of microbial invaders. Curr. Opin. Microbiol.5, 70–75 (2002) ArticleCAS Google Scholar
Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol.2, 675–680 (2001) ArticleCAS Google Scholar
Kimbrell, D. A. & Beutler, B. The evolution and genetics of innate immunity. Nature Rev. Genet.2, 256–267 (2001) ArticleCAS Google Scholar
Jung, A., Criqui, M.-C., Rutschmann, S., Hoffmann, J.-A. & Ferrandon, D. A microfluorometer assay to measure the expression of β-galactosidase and GFP reporter genes in single Drosophila flies. Biotechniques30, 594–601 (2001) ArticleCAS Google Scholar
Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential display of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA94, 14614–14619 (1997) ArticleADSCAS Google Scholar