Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites (original) (raw)

References

  1. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998)
    Article ADS CAS Google Scholar
  2. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985)
    Article CAS Google Scholar
  3. Ferreira, A., Niclas, J., Vale, R. D., Banker, G. & Kosik, K. S. Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides. J. Cell Biol. 117, 595–606 (1992)
    Article CAS Google Scholar
  4. Kim, C. H. & Lisman, J. E. A labile component of AMPA receptor-mediated synaptic transmission is dependent on microtubule motors, actin, and _N_-ethylmaleimide-sensitive factor. J. Neurosci. 21, 4188–4194 (2001)
    Article CAS Google Scholar
  5. Burack, M. A., Silverman, M. A. & Banker, G. The role of selective transport in neuronal protein sorting. Neuron 26, 465–472 (2000)
    Article CAS Google Scholar
  6. Severt, W. L. et al. The suppression of testis-brain RNA binding protein and kinesin heavy chain disrupts mRNA sorting in dendrites. J. Cell Sci. 112, 3691–3702 (1999)
    CAS PubMed Google Scholar
  7. Setou, M., Nakagawa, T., Seog, D. H. & Hirokawa, N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796–1802 (2000)
    Article ADS CAS Google Scholar
  8. Dong, H. et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284 (1997)
    Article ADS CAS Google Scholar
  9. Wyszynski, M. et al. Association of AMPA receptors with a subset of glutamate receptor-interacting protein in vivo. J. Neurosci. 19, 6528–6537 (1999)
    Article CAS Google Scholar
  10. Skoufias, D. A., Cole, D. G., Wedaman, K. P. & Scholey, J. M. The carboxyl-terminal domain of kinesin heavy chain is important for membrane binding. J. Biol. Chem. 269, 1477–1485 (1994)
    CAS PubMed Google Scholar
  11. Seiler, S. et al. Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nature Cell Biol. 2, 333–338 (2000)
    Article CAS Google Scholar
  12. Tanaka, Y. et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147–1158 (1998)
    Article CAS Google Scholar
  13. Bruckner, K. et al. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22, 511–524 (1999)
    Article CAS Google Scholar
  14. Kanai, Y. et al. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374–6384 (2000)
    Article CAS Google Scholar
  15. Rahman, A., Kamal, A., Roberts, E. A. & Goldstein, L. S. Defective kinesin heavy chain behaviour in mouse kinesin light chain mutants. J. Cell Biol. 146, 1277–1288 (1999)
    Article CAS Google Scholar
  16. Rubio, M. E. & Wenthold, R. J. Differential distribution of intracellular glutamate receptors in dendrites. J. Neurosci. 19, 5549–5562 (1999)
    Article CAS Google Scholar
  17. Verhey, K. J. et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signalling molecules. J. Cell Biol. 152, 959–970 (2001)
    Article CAS Google Scholar
  18. Lee, S. H., Valtschanoff, J. G., Kharazia, V. N., Weinberg, R. & Sheng, M. Biochemical and morphological characterization of an intracellular membrane compartment containing AMPA receptors. Neuropharmacology 41, 680–692 (2001)
    Article CAS Google Scholar
  19. Ye, B. et al. GRASP-1: a neuronal RasGEF associated with the AMPA receptor/GRIP complex. Neuron 26, 603–617 (2000)
    Article CAS Google Scholar
  20. Ito, M. et al. JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signalling pathway. Mol. Cell. Biol. 19, 7539–7548 (1999)
    Article CAS Google Scholar
  21. Bowman, A. B. et al. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583–594 (2000)
    Article CAS Google Scholar
  22. Baas, P. W., Deitch, J. S., Black, M. M. & Banker, G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl Acad. Sci. USA 85, 8335–8339 (1988)
    Article ADS CAS Google Scholar
  23. Niclas, J., Navone, F., Hom-Booher, N. & Vale, R. D. Cloning and localization of a conventional kinesin motor expressed exclusively in neurons. Neuron 12, 1059–1072 (1994)
    Article CAS Google Scholar
  24. Marszalek, J. R., Weiner, J. A., Farlow, S. J., Chun, J. & Goldstein, L. S. Novel dendritic kinesin sorting identified by different process targeting of two related kinesins: KIF21A and KIF21B. J. Cell Biol. 145, 469–479 (1999)
    Article CAS Google Scholar
  25. Toyoshima, I., Yu, H., Steuer, E. R. & Sheetz, M. P. Kinectin, a major kinesin-binding protein on ER. J. Cell Biol. 118, 1121–1131 (1992)
    Article CAS Google Scholar
  26. Huang, J. D. et al. Direct interaction of microtubule- and actin-based transport motors. Nature 397, 267–270 (1999)
    Article ADS CAS Google Scholar
  27. Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H. & Goldstein, L. S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459 (2001)
    Article Google Scholar
  28. Burette, A. et al. Differential cellular and subcellular localization of AMPA receptor-binding protein and glutamate receptor-interacting protein. J. Neurosci. 21, 495–503 (2001)
    Article CAS Google Scholar
  29. Brewer, G. J. Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J. Neurosci. Res. 42, 674–683 (1995)
    Article CAS Google Scholar

Download references